singletons-2.6: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Foldable

Description

Defines the promoted and singled versions of the Foldable type class.

Synopsis
  • class PFoldable (t :: Type -> Type) where
  • class SFoldable (t :: Type -> Type) where
  • type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b)
  • type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b)
  • type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ...
  • sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ())
  • type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ...
  • sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ())
  • type family SequenceA_ (a :: t (f a)) :: f () where ...
  • sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ())
  • type family Asum (a :: t (f a)) :: f a where ...
  • sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a)
  • type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
  • sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
  • type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ...
  • sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ())
  • type family Sequence_ (a :: t (m a)) :: m () where ...
  • sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
  • type family Msum (a :: t (m a)) :: m a where ...
  • sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a)
  • type family Concat (a :: t [a]) :: [a] where ...
  • sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
  • type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
  • sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
  • type family And (a :: t Bool) :: Bool where ...
  • sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
  • type family Or (a :: t Bool) :: Bool where ...
  • sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
  • type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
  • type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
  • type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a)
  • type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a)
  • type family NotElem (a :: a) (a :: t a) :: Bool where ...
  • sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
  • type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ...
  • sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a)
  • data FoldSym0 :: forall t6989586621680486628 m6989586621680486629. (~>) (t6989586621680486628 m6989586621680486629) m6989586621680486629
  • type FoldSym1 (arg6989586621680487247 :: t6989586621680486628 m6989586621680486629) = Fold arg6989586621680487247
  • data FoldMapSym0 :: forall a6989586621680486631 m6989586621680486630 t6989586621680486628. (~>) ((~>) a6989586621680486631 m6989586621680486630) ((~>) (t6989586621680486628 a6989586621680486631) m6989586621680486630)
  • data FoldMapSym1 (arg6989586621680487249 :: (~>) a6989586621680486631 m6989586621680486630) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486631) m6989586621680486630
  • type FoldMapSym2 (arg6989586621680487249 :: (~>) a6989586621680486631 m6989586621680486630) (arg6989586621680487250 :: t6989586621680486628 a6989586621680486631) = FoldMap arg6989586621680487249 arg6989586621680487250
  • data FoldrSym0 :: forall a6989586621680486632 b6989586621680486633 t6989586621680486628. (~>) ((~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) ((~>) b6989586621680486633 ((~>) (t6989586621680486628 a6989586621680486632) b6989586621680486633))
  • data FoldrSym1 (arg6989586621680487253 :: (~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) :: forall t6989586621680486628. (~>) b6989586621680486633 ((~>) (t6989586621680486628 a6989586621680486632) b6989586621680486633)
  • data FoldrSym2 (arg6989586621680487253 :: (~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) (arg6989586621680487254 :: b6989586621680486633) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486632) b6989586621680486633
  • type FoldrSym3 (arg6989586621680487253 :: (~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) (arg6989586621680487254 :: b6989586621680486633) (arg6989586621680487255 :: t6989586621680486628 a6989586621680486632) = Foldr arg6989586621680487253 arg6989586621680487254 arg6989586621680487255
  • data Foldr'Sym0 :: forall a6989586621680486634 b6989586621680486635 t6989586621680486628. (~>) ((~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) ((~>) b6989586621680486635 ((~>) (t6989586621680486628 a6989586621680486634) b6989586621680486635))
  • data Foldr'Sym1 (arg6989586621680487259 :: (~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) :: forall t6989586621680486628. (~>) b6989586621680486635 ((~>) (t6989586621680486628 a6989586621680486634) b6989586621680486635)
  • data Foldr'Sym2 (arg6989586621680487259 :: (~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) (arg6989586621680487260 :: b6989586621680486635) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486634) b6989586621680486635
  • type Foldr'Sym3 (arg6989586621680487259 :: (~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) (arg6989586621680487260 :: b6989586621680486635) (arg6989586621680487261 :: t6989586621680486628 a6989586621680486634) = Foldr' arg6989586621680487259 arg6989586621680487260 arg6989586621680487261
  • data FoldlSym0 :: forall b6989586621680486636 a6989586621680486637 t6989586621680486628. (~>) ((~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) ((~>) b6989586621680486636 ((~>) (t6989586621680486628 a6989586621680486637) b6989586621680486636))
  • data FoldlSym1 (arg6989586621680487265 :: (~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) :: forall t6989586621680486628. (~>) b6989586621680486636 ((~>) (t6989586621680486628 a6989586621680486637) b6989586621680486636)
  • data FoldlSym2 (arg6989586621680487265 :: (~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) (arg6989586621680487266 :: b6989586621680486636) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486637) b6989586621680486636
  • type FoldlSym3 (arg6989586621680487265 :: (~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) (arg6989586621680487266 :: b6989586621680486636) (arg6989586621680487267 :: t6989586621680486628 a6989586621680486637) = Foldl arg6989586621680487265 arg6989586621680487266 arg6989586621680487267
  • data Foldl'Sym0 :: forall b6989586621680486638 a6989586621680486639 t6989586621680486628. (~>) ((~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) ((~>) b6989586621680486638 ((~>) (t6989586621680486628 a6989586621680486639) b6989586621680486638))
  • data Foldl'Sym1 (arg6989586621680487271 :: (~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) :: forall t6989586621680486628. (~>) b6989586621680486638 ((~>) (t6989586621680486628 a6989586621680486639) b6989586621680486638)
  • data Foldl'Sym2 (arg6989586621680487271 :: (~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) (arg6989586621680487272 :: b6989586621680486638) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486639) b6989586621680486638
  • type Foldl'Sym3 (arg6989586621680487271 :: (~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) (arg6989586621680487272 :: b6989586621680486638) (arg6989586621680487273 :: t6989586621680486628 a6989586621680486639) = Foldl' arg6989586621680487271 arg6989586621680487272 arg6989586621680487273
  • data Foldr1Sym0 :: forall a6989586621680486640 t6989586621680486628. (~>) ((~>) a6989586621680486640 ((~>) a6989586621680486640 a6989586621680486640)) ((~>) (t6989586621680486628 a6989586621680486640) a6989586621680486640)
  • data Foldr1Sym1 (arg6989586621680487277 :: (~>) a6989586621680486640 ((~>) a6989586621680486640 a6989586621680486640)) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486640) a6989586621680486640
  • type Foldr1Sym2 (arg6989586621680487277 :: (~>) a6989586621680486640 ((~>) a6989586621680486640 a6989586621680486640)) (arg6989586621680487278 :: t6989586621680486628 a6989586621680486640) = Foldr1 arg6989586621680487277 arg6989586621680487278
  • data Foldl1Sym0 :: forall a6989586621680486641 t6989586621680486628. (~>) ((~>) a6989586621680486641 ((~>) a6989586621680486641 a6989586621680486641)) ((~>) (t6989586621680486628 a6989586621680486641) a6989586621680486641)
  • data Foldl1Sym1 (arg6989586621680487281 :: (~>) a6989586621680486641 ((~>) a6989586621680486641 a6989586621680486641)) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486641) a6989586621680486641
  • type Foldl1Sym2 (arg6989586621680487281 :: (~>) a6989586621680486641 ((~>) a6989586621680486641 a6989586621680486641)) (arg6989586621680487282 :: t6989586621680486628 a6989586621680486641) = Foldl1 arg6989586621680487281 arg6989586621680487282
  • data ToListSym0 :: forall t6989586621680486628 a6989586621680486642. (~>) (t6989586621680486628 a6989586621680486642) [a6989586621680486642]
  • type ToListSym1 (arg6989586621680487285 :: t6989586621680486628 a6989586621680486642) = ToList arg6989586621680487285
  • data NullSym0 :: forall t6989586621680486628 a6989586621680486643. (~>) (t6989586621680486628 a6989586621680486643) Bool
  • type NullSym1 (arg6989586621680487287 :: t6989586621680486628 a6989586621680486643) = Null arg6989586621680487287
  • data LengthSym0 :: forall t6989586621680486628 a6989586621680486644. (~>) (t6989586621680486628 a6989586621680486644) Nat
  • type LengthSym1 (arg6989586621680487289 :: t6989586621680486628 a6989586621680486644) = Length arg6989586621680487289
  • data ElemSym0 :: forall a6989586621680486645 t6989586621680486628. (~>) a6989586621680486645 ((~>) (t6989586621680486628 a6989586621680486645) Bool)
  • data ElemSym1 (arg6989586621680487291 :: a6989586621680486645) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486645) Bool
  • type ElemSym2 (arg6989586621680487291 :: a6989586621680486645) (arg6989586621680487292 :: t6989586621680486628 a6989586621680486645) = Elem arg6989586621680487291 arg6989586621680487292
  • data MaximumSym0 :: forall t6989586621680486628 a6989586621680486646. (~>) (t6989586621680486628 a6989586621680486646) a6989586621680486646
  • type MaximumSym1 (arg6989586621680487295 :: t6989586621680486628 a6989586621680486646) = Maximum arg6989586621680487295
  • data MinimumSym0 :: forall t6989586621680486628 a6989586621680486647. (~>) (t6989586621680486628 a6989586621680486647) a6989586621680486647
  • type MinimumSym1 (arg6989586621680487297 :: t6989586621680486628 a6989586621680486647) = Minimum arg6989586621680487297
  • data SumSym0 :: forall t6989586621680486628 a6989586621680486648. (~>) (t6989586621680486628 a6989586621680486648) a6989586621680486648
  • type SumSym1 (arg6989586621680487299 :: t6989586621680486628 a6989586621680486648) = Sum arg6989586621680487299
  • data ProductSym0 :: forall t6989586621680486628 a6989586621680486649. (~>) (t6989586621680486628 a6989586621680486649) a6989586621680486649
  • type ProductSym1 (arg6989586621680487301 :: t6989586621680486628 a6989586621680486649) = Product arg6989586621680487301
  • data FoldrMSym0 :: forall a6989586621680486589 b6989586621680486590 m6989586621680486588 t6989586621680486587. (~>) ((~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) ((~>) b6989586621680486590 ((~>) (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590)))
  • data FoldrMSym1 (a6989586621680487225 :: (~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) :: forall t6989586621680486587. (~>) b6989586621680486590 ((~>) (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590))
  • data FoldrMSym2 (a6989586621680487225 :: (~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) (a6989586621680487226 :: b6989586621680486590) :: forall t6989586621680486587. (~>) (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590)
  • type FoldrMSym3 (a6989586621680487225 :: (~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) (a6989586621680487226 :: b6989586621680486590) (a6989586621680487227 :: t6989586621680486587 a6989586621680486589) = FoldrM a6989586621680487225 a6989586621680487226 a6989586621680487227
  • data FoldlMSym0 :: forall b6989586621680486585 a6989586621680486586 m6989586621680486584 t6989586621680486583. (~>) ((~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) ((~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585)))
  • data FoldlMSym1 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) :: forall t6989586621680486583. (~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585))
  • data FoldlMSym2 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) :: forall t6989586621680486583. (~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585)
  • type FoldlMSym3 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) (a6989586621680487205 :: t6989586621680486583 a6989586621680486586) = FoldlM a6989586621680487203 a6989586621680487204 a6989586621680487205
  • data Traverse_Sym0 :: forall a6989586621680486581 f6989586621680486580 b6989586621680486582 t6989586621680486579. (~>) ((~>) a6989586621680486581 (f6989586621680486580 b6989586621680486582)) ((~>) (t6989586621680486579 a6989586621680486581) (f6989586621680486580 ()))
  • data Traverse_Sym1 (a6989586621680487195 :: (~>) a6989586621680486581 (f6989586621680486580 b6989586621680486582)) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486581) (f6989586621680486580 ())
  • type Traverse_Sym2 (a6989586621680487195 :: (~>) a6989586621680486581 (f6989586621680486580 b6989586621680486582)) (a6989586621680487196 :: t6989586621680486579 a6989586621680486581) = Traverse_ a6989586621680487195 a6989586621680487196
  • data For_Sym0 :: forall t6989586621680486575 a6989586621680486577 f6989586621680486576 b6989586621680486578. (~>) (t6989586621680486575 a6989586621680486577) ((~>) ((~>) a6989586621680486577 (f6989586621680486576 b6989586621680486578)) (f6989586621680486576 ()))
  • data For_Sym1 (a6989586621680487189 :: t6989586621680486575 a6989586621680486577) :: forall f6989586621680486576 b6989586621680486578. (~>) ((~>) a6989586621680486577 (f6989586621680486576 b6989586621680486578)) (f6989586621680486576 ())
  • type For_Sym2 (a6989586621680487189 :: t6989586621680486575 a6989586621680486577) (a6989586621680487190 :: (~>) a6989586621680486577 (f6989586621680486576 b6989586621680486578)) = For_ a6989586621680487189 a6989586621680487190
  • data SequenceA_Sym0 :: forall t6989586621680486564 f6989586621680486565 a6989586621680486566. (~>) (t6989586621680486564 (f6989586621680486565 a6989586621680486566)) (f6989586621680486565 ())
  • type SequenceA_Sym1 (a6989586621680487164 :: t6989586621680486564 (f6989586621680486565 a6989586621680486566)) = SequenceA_ a6989586621680487164
  • data AsumSym0 :: forall t6989586621680486558 f6989586621680486559 a6989586621680486560. (~>) (t6989586621680486558 (f6989586621680486559 a6989586621680486560)) (f6989586621680486559 a6989586621680486560)
  • type AsumSym1 (a6989586621680487154 :: t6989586621680486558 (f6989586621680486559 a6989586621680486560)) = Asum a6989586621680487154
  • data MapM_Sym0 :: forall a6989586621680486573 m6989586621680486572 b6989586621680486574 t6989586621680486571. (~>) ((~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) ((~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()))
  • data MapM_Sym1 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) :: forall t6989586621680486571. (~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ())
  • type MapM_Sym2 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) (a6989586621680487178 :: t6989586621680486571 a6989586621680486573) = MapM_ a6989586621680487177 a6989586621680487178
  • data ForM_Sym0 :: forall t6989586621680486567 a6989586621680486569 m6989586621680486568 b6989586621680486570. (~>) (t6989586621680486567 a6989586621680486569) ((~>) ((~>) a6989586621680486569 (m6989586621680486568 b6989586621680486570)) (m6989586621680486568 ()))
  • data ForM_Sym1 (a6989586621680487171 :: t6989586621680486567 a6989586621680486569) :: forall m6989586621680486568 b6989586621680486570. (~>) ((~>) a6989586621680486569 (m6989586621680486568 b6989586621680486570)) (m6989586621680486568 ())
  • type ForM_Sym2 (a6989586621680487171 :: t6989586621680486567 a6989586621680486569) (a6989586621680487172 :: (~>) a6989586621680486569 (m6989586621680486568 b6989586621680486570)) = ForM_ a6989586621680487171 a6989586621680487172
  • data Sequence_Sym0 :: forall t6989586621680486561 m6989586621680486562 a6989586621680486563. (~>) (t6989586621680486561 (m6989586621680486562 a6989586621680486563)) (m6989586621680486562 ())
  • type Sequence_Sym1 (a6989586621680487159 :: t6989586621680486561 (m6989586621680486562 a6989586621680486563)) = Sequence_ a6989586621680487159
  • data MsumSym0 :: forall t6989586621680486555 m6989586621680486556 a6989586621680486557. (~>) (t6989586621680486555 (m6989586621680486556 a6989586621680486557)) (m6989586621680486556 a6989586621680486557)
  • type MsumSym1 (a6989586621680487149 :: t6989586621680486555 (m6989586621680486556 a6989586621680486557)) = Msum a6989586621680487149
  • data ConcatSym0 :: forall t6989586621680486553 a6989586621680486554. (~>) (t6989586621680486553 [a6989586621680486554]) [a6989586621680486554]
  • type ConcatSym1 (a6989586621680487135 :: t6989586621680486553 [a6989586621680486554]) = Concat a6989586621680487135
  • data ConcatMapSym0 :: forall a6989586621680486551 b6989586621680486552 t6989586621680486550. (~>) ((~>) a6989586621680486551 [b6989586621680486552]) ((~>) (t6989586621680486550 a6989586621680486551) [b6989586621680486552])
  • data ConcatMapSym1 (a6989586621680487119 :: (~>) a6989586621680486551 [b6989586621680486552]) :: forall t6989586621680486550. (~>) (t6989586621680486550 a6989586621680486551) [b6989586621680486552]
  • type ConcatMapSym2 (a6989586621680487119 :: (~>) a6989586621680486551 [b6989586621680486552]) (a6989586621680487120 :: t6989586621680486550 a6989586621680486551) = ConcatMap a6989586621680487119 a6989586621680487120
  • data AndSym0 :: forall t6989586621680486549. (~>) (t6989586621680486549 Bool) Bool
  • type AndSym1 (a6989586621680487110 :: t6989586621680486549 Bool) = And a6989586621680487110
  • data OrSym0 :: forall t6989586621680486548. (~>) (t6989586621680486548 Bool) Bool
  • type OrSym1 (a6989586621680487101 :: t6989586621680486548 Bool) = Or a6989586621680487101
  • data AnySym0 :: forall a6989586621680486547 t6989586621680486546. (~>) ((~>) a6989586621680486547 Bool) ((~>) (t6989586621680486546 a6989586621680486547) Bool)
  • data AnySym1 (a6989586621680487088 :: (~>) a6989586621680486547 Bool) :: forall t6989586621680486546. (~>) (t6989586621680486546 a6989586621680486547) Bool
  • type AnySym2 (a6989586621680487088 :: (~>) a6989586621680486547 Bool) (a6989586621680487089 :: t6989586621680486546 a6989586621680486547) = Any a6989586621680487088 a6989586621680487089
  • data AllSym0 :: forall a6989586621680486545 t6989586621680486544. (~>) ((~>) a6989586621680486545 Bool) ((~>) (t6989586621680486544 a6989586621680486545) Bool)
  • data AllSym1 (a6989586621680487075 :: (~>) a6989586621680486545 Bool) :: forall t6989586621680486544. (~>) (t6989586621680486544 a6989586621680486545) Bool
  • type AllSym2 (a6989586621680487075 :: (~>) a6989586621680486545 Bool) (a6989586621680487076 :: t6989586621680486544 a6989586621680486545) = All a6989586621680487075 a6989586621680487076
  • data MaximumBySym0 :: forall a6989586621680486543 t6989586621680486542. (~>) ((~>) a6989586621680486543 ((~>) a6989586621680486543 Ordering)) ((~>) (t6989586621680486542 a6989586621680486543) a6989586621680486543)
  • data MaximumBySym1 (a6989586621680487050 :: (~>) a6989586621680486543 ((~>) a6989586621680486543 Ordering)) :: forall t6989586621680486542. (~>) (t6989586621680486542 a6989586621680486543) a6989586621680486543
  • type MaximumBySym2 (a6989586621680487050 :: (~>) a6989586621680486543 ((~>) a6989586621680486543 Ordering)) (a6989586621680487051 :: t6989586621680486542 a6989586621680486543) = MaximumBy a6989586621680487050 a6989586621680487051
  • data MinimumBySym0 :: forall a6989586621680486541 t6989586621680486540. (~>) ((~>) a6989586621680486541 ((~>) a6989586621680486541 Ordering)) ((~>) (t6989586621680486540 a6989586621680486541) a6989586621680486541)
  • data MinimumBySym1 (a6989586621680487025 :: (~>) a6989586621680486541 ((~>) a6989586621680486541 Ordering)) :: forall t6989586621680486540. (~>) (t6989586621680486540 a6989586621680486541) a6989586621680486541
  • type MinimumBySym2 (a6989586621680487025 :: (~>) a6989586621680486541 ((~>) a6989586621680486541 Ordering)) (a6989586621680487026 :: t6989586621680486540 a6989586621680486541) = MinimumBy a6989586621680487025 a6989586621680487026
  • data NotElemSym0 :: forall a6989586621680486539 t6989586621680486538. (~>) a6989586621680486539 ((~>) (t6989586621680486538 a6989586621680486539) Bool)
  • data NotElemSym1 (a6989586621680487017 :: a6989586621680486539) :: forall t6989586621680486538. (~>) (t6989586621680486538 a6989586621680486539) Bool
  • type NotElemSym2 (a6989586621680487017 :: a6989586621680486539) (a6989586621680487018 :: t6989586621680486538 a6989586621680486539) = NotElem a6989586621680487017 a6989586621680487018
  • data FindSym0 :: forall a6989586621680486537 t6989586621680486536. (~>) ((~>) a6989586621680486537 Bool) ((~>) (t6989586621680486536 a6989586621680486537) (Maybe a6989586621680486537))
  • data FindSym1 (a6989586621680486990 :: (~>) a6989586621680486537 Bool) :: forall t6989586621680486536. (~>) (t6989586621680486536 a6989586621680486537) (Maybe a6989586621680486537)
  • type FindSym2 (a6989586621680486990 :: (~>) a6989586621680486537 Bool) (a6989586621680486991 :: t6989586621680486536 a6989586621680486537) = Find a6989586621680486990 a6989586621680486991

Documentation

class PFoldable (t :: Type -> Type) Source #

Associated Types

type Fold (arg :: t m) :: m Source #

type Fold a = Apply Fold_6989586621680487304Sym0 a Source #

type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #

type FoldMap a a = Apply (Apply FoldMap_6989586621680487314Sym0 a) a Source #

type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680487329Sym0 a) a) a Source #

type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr' a a a = Apply (Apply (Apply Foldr'_6989586621680487354Sym0 a) a) a Source #

type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680487384Sym0 a) a) a Source #

type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl' a a a = Apply (Apply (Apply Foldl'_6989586621680487409Sym0 a) a) a Source #

type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldr1 a a = Apply (Apply Foldr1_6989586621680487438Sym0 a) a Source #

type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldl1 a a = Apply (Apply Foldl1_6989586621680487463Sym0 a) a Source #

type ToList (arg :: t a) :: [a] Source #

type ToList a = Apply ToList_6989586621680487487Sym0 a Source #

type Null (arg :: t a) :: Bool Source #

type Null a = Apply Null_6989586621680487496Sym0 a Source #

type Length (arg :: t a) :: Nat Source #

type Length a = Apply Length_6989586621680487517Sym0 a Source #

type Elem (arg :: a) (arg :: t a) :: Bool Source #

type Elem a a = Apply (Apply Elem_6989586621680487540Sym0 a) a Source #

type Maximum (arg :: t a) :: a Source #

type Maximum a = Apply Maximum_6989586621680487555Sym0 a Source #

type Minimum (arg :: t a) :: a Source #

type Minimum a = Apply Minimum_6989586621680487568Sym0 a Source #

type Sum (arg :: t a) :: a Source #

type Sum a = Apply Sum_6989586621680487581Sym0 a Source #

type Product (arg :: t a) :: a Source #

type Product a = Apply Product_6989586621680487594Sym0 a Source #

Instances

Instances details
PFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

class SFoldable (t :: Type -> Type) where Source #

Minimal complete definition

Nothing

Methods

sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680487304Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680487314Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680487329Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680487354Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680487384Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680487409Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680487438Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680487463Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680487487Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680487496Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Nat) ~ Apply Length_6989586621680487517Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680487540Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680487555Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680487568Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #

default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680487581Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680487594Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

Instances

Instances details
SFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: [m]). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: [a]). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: [a]). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: [a]). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: [a]). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Maybe m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Maybe a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Maybe a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Maybe a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Maybe a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Maybe a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: NonEmpty m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: NonEmpty a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: NonEmpty a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Option m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Option a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Option a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Option a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Option a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Option a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Dual m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Dual a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Dual a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Dual a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Dual a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Dual a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Product m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Product a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Product a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Product a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Product a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Product a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Sum m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Sum a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Sum a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Sum a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Sum a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Sum a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Either a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Either a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Either a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: (a, m)). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: (a, a0)). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: (a, a0)). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldrM f z0 xs = Apply (Apply (Apply (Apply FoldlSym0 (Let6989586621680487234F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b) Source #

type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldlM f z0 xs = Apply (Apply (Apply (Apply FoldrSym0 (Let6989586621680487212F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #

type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ... Source #

Equations

Traverse_ f a_6989586621680487199 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (*>@#@$)) f)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680487199 

sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ()) Source #

type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ... Source #

Equations

For_ a_6989586621680487185 a_6989586621680487187 = Apply (Apply (Apply FlipSym0 Traverse_Sym0) a_6989586621680487185) a_6989586621680487187 

sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ()) Source #

type family SequenceA_ (a :: t (f a)) :: f () where ... Source #

Equations

SequenceA_ a_6989586621680487162 = Apply (Apply (Apply FoldrSym0 (*>@#@$)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680487162 

sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ()) Source #

type family Asum (a :: t (f a)) :: f a where ... Source #

Equations

Asum a_6989586621680487152 = Apply (Apply (Apply FoldrSym0 (<|>@#@$)) EmptySym0) a_6989586621680487152 

sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a) Source #

type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #

Equations

MapM_ f a_6989586621680487181 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680487181 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ... Source #

Equations

ForM_ a_6989586621680487167 a_6989586621680487169 = Apply (Apply (Apply FlipSym0 MapM_Sym0) a_6989586621680487167) a_6989586621680487169 

sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ()) Source #

type family Sequence_ (a :: t (m a)) :: m () where ... Source #

Equations

Sequence_ a_6989586621680487157 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680487157 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family Msum (a :: t (m a)) :: m a where ... Source #

Equations

Msum a_6989586621680487147 = Apply AsumSym0 a_6989586621680487147 

sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #

type family Concat (a :: t [a]) :: [a] where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680487138Sym0 xs)) '[]) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680487125Sym0 f) xs)) '[]) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And x = Case_6989586621680487115 x (Let6989586621680487113Scrutinee_6989586621680486875Sym1 x) 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or x = Case_6989586621680487106 x (Let6989586621680487104Scrutinee_6989586621680486877Sym1 x) 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

Any p x = Case_6989586621680487097 p x (Let6989586621680487094Scrutinee_6989586621680486879Sym2 p x) 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

All p x = Case_6989586621680487084 p x (Let6989586621680487081Scrutinee_6989586621680486881Sym2 p x) 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MaximumBy cmp a_6989586621680487054 = Apply (Apply Foldl1Sym0 (Let6989586621680487058Max'Sym2 cmp a_6989586621680487054)) a_6989586621680487054 

sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #

type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MinimumBy cmp a_6989586621680487029 = Apply (Apply Foldl1Sym0 (Let6989586621680487033Min'Sym2 cmp a_6989586621680487029)) a_6989586621680487029 

sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #

type family NotElem (a :: a) (a :: t a) :: Bool where ... Source #

Equations

NotElem x a_6989586621680487021 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680487021 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ... Source #

Equations

Find p y = Case_6989586621680487013 p y (Let6989586621680486996Scrutinee_6989586621680486887Sym2 p y) 

sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #

Defunctionalization symbols

data FoldSym0 :: forall t6989586621680486628 m6989586621680486629. (~>) (t6989586621680486628 m6989586621680486629) m6989586621680486629 Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldSym0 :: TyFun (t m) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldSym0 :: TyFun (t6989586621680486628 m6989586621680486629) m6989586621680486629 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (arg6989586621680487247 :: t m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (arg6989586621680487247 :: t m) = Fold arg6989586621680487247

type FoldSym1 (arg6989586621680487247 :: t6989586621680486628 m6989586621680486629) = Fold arg6989586621680487247 Source #

data FoldMapSym0 :: forall a6989586621680486631 m6989586621680486630 t6989586621680486628. (~>) ((~>) a6989586621680486631 m6989586621680486630) ((~>) (t6989586621680486628 a6989586621680486631) m6989586621680486630) Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a6989586621680486631 ~> m6989586621680486630) (t6989586621680486628 a6989586621680486631 ~> m6989586621680486630) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a6989586621680486631 ~> m6989586621680486630) (t6989586621680486628 a6989586621680486631 ~> m6989586621680486630) -> Type) (arg6989586621680487249 :: a6989586621680486631 ~> m6989586621680486630) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a6989586621680486631 ~> m6989586621680486630) (t6989586621680486628 a6989586621680486631 ~> m6989586621680486630) -> Type) (arg6989586621680487249 :: a6989586621680486631 ~> m6989586621680486630) = FoldMapSym1 arg6989586621680487249 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486631) m6989586621680486630 -> Type

data FoldMapSym1 (arg6989586621680487249 :: (~>) a6989586621680486631 m6989586621680486630) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486631) m6989586621680486630 Source #

Instances

Instances details
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d t :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldMapSym1 d t) Source #

SuppressUnusedWarnings (FoldMapSym1 arg6989586621680487249 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486631) m6989586621680486630 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 arg6989586621680487249 t :: TyFun (t a) m -> Type) (arg6989586621680487250 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 arg6989586621680487249 t :: TyFun (t a) m -> Type) (arg6989586621680487250 :: t a) = FoldMap arg6989586621680487249 arg6989586621680487250

type FoldMapSym2 (arg6989586621680487249 :: (~>) a6989586621680486631 m6989586621680486630) (arg6989586621680487250 :: t6989586621680486628 a6989586621680486631) = FoldMap arg6989586621680487249 arg6989586621680487250 Source #

data FoldrSym0 :: forall a6989586621680486632 b6989586621680486633 t6989586621680486628. (~>) ((~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) ((~>) b6989586621680486633 ((~>) (t6989586621680486628 a6989586621680486632) b6989586621680486633)) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a6989586621680486632 ~> (b6989586621680486633 ~> b6989586621680486633)) (b6989586621680486633 ~> (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a6989586621680486632 ~> (b6989586621680486633 ~> b6989586621680486633)) (b6989586621680486633 ~> (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633)) -> Type) (arg6989586621680487253 :: a6989586621680486632 ~> (b6989586621680486633 ~> b6989586621680486633)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a6989586621680486632 ~> (b6989586621680486633 ~> b6989586621680486633)) (b6989586621680486633 ~> (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633)) -> Type) (arg6989586621680487253 :: a6989586621680486632 ~> (b6989586621680486633 ~> b6989586621680486633)) = FoldrSym1 arg6989586621680487253 t6989586621680486628 :: TyFun b6989586621680486633 (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633) -> Type

data FoldrSym1 (arg6989586621680487253 :: (~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) :: forall t6989586621680486628. (~>) b6989586621680486633 ((~>) (t6989586621680486628 a6989586621680486632) b6989586621680486633) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldrSym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym1 d t) Source #

SuppressUnusedWarnings (FoldrSym1 arg6989586621680487253 t6989586621680486628 :: TyFun b6989586621680486633 (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 arg6989586621680487253 t6989586621680486628 :: TyFun b6989586621680486633 (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633) -> Type) (arg6989586621680487254 :: b6989586621680486633) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 arg6989586621680487253 t6989586621680486628 :: TyFun b6989586621680486633 (t6989586621680486628 a6989586621680486632 ~> b6989586621680486633) -> Type) (arg6989586621680487254 :: b6989586621680486633) = FoldrSym2 arg6989586621680487253 arg6989586621680487254 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486632) b6989586621680486633 -> Type

data FoldrSym2 (arg6989586621680487253 :: (~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) (arg6989586621680487254 :: b6989586621680486633) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486632) b6989586621680486633 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldrSym2 arg6989586621680487254 arg6989586621680487253 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486632) b6989586621680486633 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 arg6989586621680487254 arg6989586621680487253 t :: TyFun (t a) b -> Type) (arg6989586621680487255 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 arg6989586621680487254 arg6989586621680487253 t :: TyFun (t a) b -> Type) (arg6989586621680487255 :: t a) = Foldr arg6989586621680487254 arg6989586621680487253 arg6989586621680487255

type FoldrSym3 (arg6989586621680487253 :: (~>) a6989586621680486632 ((~>) b6989586621680486633 b6989586621680486633)) (arg6989586621680487254 :: b6989586621680486633) (arg6989586621680487255 :: t6989586621680486628 a6989586621680486632) = Foldr arg6989586621680487253 arg6989586621680487254 arg6989586621680487255 Source #

data Foldr'Sym0 :: forall a6989586621680486634 b6989586621680486635 t6989586621680486628. (~>) ((~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) ((~>) b6989586621680486635 ((~>) (t6989586621680486628 a6989586621680486634) b6989586621680486635)) Source #

Instances

Instances details
SFoldable t => SingI (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr'Sym0 :: TyFun (a6989586621680486634 ~> (b6989586621680486635 ~> b6989586621680486635)) (b6989586621680486635 ~> (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a6989586621680486634 ~> (b6989586621680486635 ~> b6989586621680486635)) (b6989586621680486635 ~> (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635)) -> Type) (arg6989586621680487259 :: a6989586621680486634 ~> (b6989586621680486635 ~> b6989586621680486635)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a6989586621680486634 ~> (b6989586621680486635 ~> b6989586621680486635)) (b6989586621680486635 ~> (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635)) -> Type) (arg6989586621680487259 :: a6989586621680486634 ~> (b6989586621680486635 ~> b6989586621680486635)) = Foldr'Sym1 arg6989586621680487259 t6989586621680486628 :: TyFun b6989586621680486635 (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635) -> Type

data Foldr'Sym1 (arg6989586621680487259 :: (~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) :: forall t6989586621680486628. (~>) b6989586621680486635 ((~>) (t6989586621680486628 a6989586621680486634) b6989586621680486635) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr'Sym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym1 d t) Source #

SuppressUnusedWarnings (Foldr'Sym1 arg6989586621680487259 t6989586621680486628 :: TyFun b6989586621680486635 (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 arg6989586621680487259 t6989586621680486628 :: TyFun b6989586621680486635 (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635) -> Type) (arg6989586621680487260 :: b6989586621680486635) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 arg6989586621680487259 t6989586621680486628 :: TyFun b6989586621680486635 (t6989586621680486628 a6989586621680486634 ~> b6989586621680486635) -> Type) (arg6989586621680487260 :: b6989586621680486635) = Foldr'Sym2 arg6989586621680487259 arg6989586621680487260 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486634) b6989586621680486635 -> Type

data Foldr'Sym2 (arg6989586621680487259 :: (~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) (arg6989586621680487260 :: b6989586621680486635) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486634) b6989586621680486635 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldr'Sym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym2 d1 d2 t) Source #

SuppressUnusedWarnings (Foldr'Sym2 arg6989586621680487260 arg6989586621680487259 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486634) b6989586621680486635 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 arg6989586621680487260 arg6989586621680487259 t :: TyFun (t a) b -> Type) (arg6989586621680487261 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 arg6989586621680487260 arg6989586621680487259 t :: TyFun (t a) b -> Type) (arg6989586621680487261 :: t a) = Foldr' arg6989586621680487260 arg6989586621680487259 arg6989586621680487261

type Foldr'Sym3 (arg6989586621680487259 :: (~>) a6989586621680486634 ((~>) b6989586621680486635 b6989586621680486635)) (arg6989586621680487260 :: b6989586621680486635) (arg6989586621680487261 :: t6989586621680486628 a6989586621680486634) = Foldr' arg6989586621680487259 arg6989586621680487260 arg6989586621680487261 Source #

data FoldlSym0 :: forall b6989586621680486636 a6989586621680486637 t6989586621680486628. (~>) ((~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) ((~>) b6989586621680486636 ((~>) (t6989586621680486628 a6989586621680486637) b6989586621680486636)) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b6989586621680486636 ~> (a6989586621680486637 ~> b6989586621680486636)) (b6989586621680486636 ~> (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b6989586621680486636 ~> (a6989586621680486637 ~> b6989586621680486636)) (b6989586621680486636 ~> (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636)) -> Type) (arg6989586621680487265 :: b6989586621680486636 ~> (a6989586621680486637 ~> b6989586621680486636)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b6989586621680486636 ~> (a6989586621680486637 ~> b6989586621680486636)) (b6989586621680486636 ~> (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636)) -> Type) (arg6989586621680487265 :: b6989586621680486636 ~> (a6989586621680486637 ~> b6989586621680486636)) = FoldlSym1 arg6989586621680487265 t6989586621680486628 :: TyFun b6989586621680486636 (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636) -> Type

data FoldlSym1 (arg6989586621680487265 :: (~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) :: forall t6989586621680486628. (~>) b6989586621680486636 ((~>) (t6989586621680486628 a6989586621680486637) b6989586621680486636) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldlSym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym1 d t) Source #

SuppressUnusedWarnings (FoldlSym1 arg6989586621680487265 t6989586621680486628 :: TyFun b6989586621680486636 (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 arg6989586621680487265 t6989586621680486628 :: TyFun b6989586621680486636 (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636) -> Type) (arg6989586621680487266 :: b6989586621680486636) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 arg6989586621680487265 t6989586621680486628 :: TyFun b6989586621680486636 (t6989586621680486628 a6989586621680486637 ~> b6989586621680486636) -> Type) (arg6989586621680487266 :: b6989586621680486636) = FoldlSym2 arg6989586621680487265 arg6989586621680487266 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486637) b6989586621680486636 -> Type

data FoldlSym2 (arg6989586621680487265 :: (~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) (arg6989586621680487266 :: b6989586621680486636) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486637) b6989586621680486636 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlSym2 arg6989586621680487266 arg6989586621680487265 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486637) b6989586621680486636 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 arg6989586621680487266 arg6989586621680487265 t :: TyFun (t a) b -> Type) (arg6989586621680487267 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 arg6989586621680487266 arg6989586621680487265 t :: TyFun (t a) b -> Type) (arg6989586621680487267 :: t a) = Foldl arg6989586621680487266 arg6989586621680487265 arg6989586621680487267

type FoldlSym3 (arg6989586621680487265 :: (~>) b6989586621680486636 ((~>) a6989586621680486637 b6989586621680486636)) (arg6989586621680487266 :: b6989586621680486636) (arg6989586621680487267 :: t6989586621680486628 a6989586621680486637) = Foldl arg6989586621680487265 arg6989586621680487266 arg6989586621680487267 Source #

data Foldl'Sym0 :: forall b6989586621680486638 a6989586621680486639 t6989586621680486628. (~>) ((~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) ((~>) b6989586621680486638 ((~>) (t6989586621680486628 a6989586621680486639) b6989586621680486638)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b6989586621680486638 ~> (a6989586621680486639 ~> b6989586621680486638)) (b6989586621680486638 ~> (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b6989586621680486638 ~> (a6989586621680486639 ~> b6989586621680486638)) (b6989586621680486638 ~> (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638)) -> Type) (arg6989586621680487271 :: b6989586621680486638 ~> (a6989586621680486639 ~> b6989586621680486638)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b6989586621680486638 ~> (a6989586621680486639 ~> b6989586621680486638)) (b6989586621680486638 ~> (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638)) -> Type) (arg6989586621680487271 :: b6989586621680486638 ~> (a6989586621680486639 ~> b6989586621680486638)) = Foldl'Sym1 arg6989586621680487271 t6989586621680486628 :: TyFun b6989586621680486638 (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638) -> Type

data Foldl'Sym1 (arg6989586621680487271 :: (~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) :: forall t6989586621680486628. (~>) b6989586621680486638 ((~>) (t6989586621680486628 a6989586621680486639) b6989586621680486638) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl'Sym1 d t :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym1 d t) Source #

SuppressUnusedWarnings (Foldl'Sym1 arg6989586621680487271 t6989586621680486628 :: TyFun b6989586621680486638 (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 arg6989586621680487271 t6989586621680486628 :: TyFun b6989586621680486638 (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638) -> Type) (arg6989586621680487272 :: b6989586621680486638) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 arg6989586621680487271 t6989586621680486628 :: TyFun b6989586621680486638 (t6989586621680486628 a6989586621680486639 ~> b6989586621680486638) -> Type) (arg6989586621680487272 :: b6989586621680486638) = Foldl'Sym2 arg6989586621680487271 arg6989586621680487272 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486639) b6989586621680486638 -> Type

data Foldl'Sym2 (arg6989586621680487271 :: (~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) (arg6989586621680487272 :: b6989586621680486638) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486639) b6989586621680486638 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 t :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym2 d1 d2 t) Source #

SuppressUnusedWarnings (Foldl'Sym2 arg6989586621680487272 arg6989586621680487271 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486639) b6989586621680486638 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 arg6989586621680487272 arg6989586621680487271 t :: TyFun (t a) b -> Type) (arg6989586621680487273 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 arg6989586621680487272 arg6989586621680487271 t :: TyFun (t a) b -> Type) (arg6989586621680487273 :: t a) = Foldl' arg6989586621680487272 arg6989586621680487271 arg6989586621680487273

type Foldl'Sym3 (arg6989586621680487271 :: (~>) b6989586621680486638 ((~>) a6989586621680486639 b6989586621680486638)) (arg6989586621680487272 :: b6989586621680486638) (arg6989586621680487273 :: t6989586621680486628 a6989586621680486639) = Foldl' arg6989586621680487271 arg6989586621680487272 arg6989586621680487273 Source #

data Foldr1Sym0 :: forall a6989586621680486640 t6989586621680486628. (~>) ((~>) a6989586621680486640 ((~>) a6989586621680486640 a6989586621680486640)) ((~>) (t6989586621680486628 a6989586621680486640) a6989586621680486640) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a6989586621680486640 ~> (a6989586621680486640 ~> a6989586621680486640)) (t6989586621680486628 a6989586621680486640 ~> a6989586621680486640) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a6989586621680486640 ~> (a6989586621680486640 ~> a6989586621680486640)) (t6989586621680486628 a6989586621680486640 ~> a6989586621680486640) -> Type) (arg6989586621680487277 :: a6989586621680486640 ~> (a6989586621680486640 ~> a6989586621680486640)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a6989586621680486640 ~> (a6989586621680486640 ~> a6989586621680486640)) (t6989586621680486628 a6989586621680486640 ~> a6989586621680486640) -> Type) (arg6989586621680487277 :: a6989586621680486640 ~> (a6989586621680486640 ~> a6989586621680486640)) = Foldr1Sym1 arg6989586621680487277 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486640) a6989586621680486640 -> Type

data Foldr1Sym1 (arg6989586621680487277 :: (~>) a6989586621680486640 ((~>) a6989586621680486640 a6989586621680486640)) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486640) a6989586621680486640 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr1Sym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr1Sym1 d t) Source #

SuppressUnusedWarnings (Foldr1Sym1 arg6989586621680487277 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486640) a6989586621680486640 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 arg6989586621680487277 t :: TyFun (t a) a -> Type) (arg6989586621680487278 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 arg6989586621680487277 t :: TyFun (t a) a -> Type) (arg6989586621680487278 :: t a) = Foldr1 arg6989586621680487277 arg6989586621680487278

type Foldr1Sym2 (arg6989586621680487277 :: (~>) a6989586621680486640 ((~>) a6989586621680486640 a6989586621680486640)) (arg6989586621680487278 :: t6989586621680486628 a6989586621680486640) = Foldr1 arg6989586621680487277 arg6989586621680487278 Source #

data Foldl1Sym0 :: forall a6989586621680486641 t6989586621680486628. (~>) ((~>) a6989586621680486641 ((~>) a6989586621680486641 a6989586621680486641)) ((~>) (t6989586621680486628 a6989586621680486641) a6989586621680486641) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a6989586621680486641 ~> (a6989586621680486641 ~> a6989586621680486641)) (t6989586621680486628 a6989586621680486641 ~> a6989586621680486641) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a6989586621680486641 ~> (a6989586621680486641 ~> a6989586621680486641)) (t6989586621680486628 a6989586621680486641 ~> a6989586621680486641) -> Type) (arg6989586621680487281 :: a6989586621680486641 ~> (a6989586621680486641 ~> a6989586621680486641)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a6989586621680486641 ~> (a6989586621680486641 ~> a6989586621680486641)) (t6989586621680486628 a6989586621680486641 ~> a6989586621680486641) -> Type) (arg6989586621680487281 :: a6989586621680486641 ~> (a6989586621680486641 ~> a6989586621680486641)) = Foldl1Sym1 arg6989586621680487281 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486641) a6989586621680486641 -> Type

data Foldl1Sym1 (arg6989586621680487281 :: (~>) a6989586621680486641 ((~>) a6989586621680486641 a6989586621680486641)) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486641) a6989586621680486641 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl1Sym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl1Sym1 d t) Source #

SuppressUnusedWarnings (Foldl1Sym1 arg6989586621680487281 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486641) a6989586621680486641 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 arg6989586621680487281 t :: TyFun (t a) a -> Type) (arg6989586621680487282 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 arg6989586621680487281 t :: TyFun (t a) a -> Type) (arg6989586621680487282 :: t a) = Foldl1 arg6989586621680487281 arg6989586621680487282

type Foldl1Sym2 (arg6989586621680487281 :: (~>) a6989586621680486641 ((~>) a6989586621680486641 a6989586621680486641)) (arg6989586621680487282 :: t6989586621680486628 a6989586621680486641) = Foldl1 arg6989586621680487281 arg6989586621680487282 Source #

data ToListSym0 :: forall t6989586621680486628 a6989586621680486642. (~>) (t6989586621680486628 a6989586621680486642) [a6989586621680486642] Source #

Instances

Instances details
SFoldable t => SingI (ToListSym0 :: TyFun (t a) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ToListSym0 :: TyFun (t6989586621680486628 a6989586621680486642) [a6989586621680486642] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (arg6989586621680487285 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (arg6989586621680487285 :: t a) = ToList arg6989586621680487285

type ToListSym1 (arg6989586621680487285 :: t6989586621680486628 a6989586621680486642) = ToList arg6989586621680487285 Source #

data NullSym0 :: forall t6989586621680486628 a6989586621680486643. (~>) (t6989586621680486628 a6989586621680486643) Bool Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NullSym0 :: TyFun (t6989586621680486628 a6989586621680486643) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (arg6989586621680487287 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (arg6989586621680487287 :: t a) = Null arg6989586621680487287

type NullSym1 (arg6989586621680487287 :: t6989586621680486628 a6989586621680486643) = Null arg6989586621680487287 Source #

data LengthSym0 :: forall t6989586621680486628 a6989586621680486644. (~>) (t6989586621680486628 a6989586621680486644) Nat Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (LengthSym0 :: TyFun (t6989586621680486628 a6989586621680486644) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (arg6989586621680487289 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (arg6989586621680487289 :: t a) = Length arg6989586621680487289

type LengthSym1 (arg6989586621680487289 :: t6989586621680486628 a6989586621680486644) = Length arg6989586621680487289 Source #

data ElemSym0 :: forall a6989586621680486645 t6989586621680486628. (~>) a6989586621680486645 ((~>) (t6989586621680486628 a6989586621680486645) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ElemSym0 :: TyFun a6989586621680486645 (t6989586621680486628 a6989586621680486645 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a6989586621680486645 (t6989586621680486628 a6989586621680486645 ~> Bool) -> Type) (arg6989586621680487291 :: a6989586621680486645) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a6989586621680486645 (t6989586621680486628 a6989586621680486645 ~> Bool) -> Type) (arg6989586621680487291 :: a6989586621680486645) = ElemSym1 arg6989586621680487291 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486645) Bool -> Type

data ElemSym1 (arg6989586621680487291 :: a6989586621680486645) :: forall t6989586621680486628. (~>) (t6989586621680486628 a6989586621680486645) Bool Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ElemSym1 d t) Source #

SuppressUnusedWarnings (ElemSym1 arg6989586621680487291 t6989586621680486628 :: TyFun (t6989586621680486628 a6989586621680486645) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 arg6989586621680487291 t :: TyFun (t a) Bool -> Type) (arg6989586621680487292 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 arg6989586621680487291 t :: TyFun (t a) Bool -> Type) (arg6989586621680487292 :: t a) = Elem arg6989586621680487291 arg6989586621680487292

type ElemSym2 (arg6989586621680487291 :: a6989586621680486645) (arg6989586621680487292 :: t6989586621680486628 a6989586621680486645) = Elem arg6989586621680487291 arg6989586621680487292 Source #

data MaximumSym0 :: forall t6989586621680486628 a6989586621680486646. (~>) (t6989586621680486628 a6989586621680486646) a6989586621680486646 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t6989586621680486628 a6989586621680486646) a6989586621680486646 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487295 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487295 :: t a) = Maximum arg6989586621680487295

type MaximumSym1 (arg6989586621680487295 :: t6989586621680486628 a6989586621680486646) = Maximum arg6989586621680487295 Source #

data MinimumSym0 :: forall t6989586621680486628 a6989586621680486647. (~>) (t6989586621680486628 a6989586621680486647) a6989586621680486647 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t6989586621680486628 a6989586621680486647) a6989586621680486647 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487297 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487297 :: t a) = Minimum arg6989586621680487297

type MinimumSym1 (arg6989586621680487297 :: t6989586621680486628 a6989586621680486647) = Minimum arg6989586621680487297 Source #

data SumSym0 :: forall t6989586621680486628 a6989586621680486648. (~>) (t6989586621680486628 a6989586621680486648) a6989586621680486648 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SumSym0 :: TyFun (t6989586621680486628 a6989586621680486648) a6989586621680486648 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487299 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (arg6989586621680487299 :: t a) = Sum arg6989586621680487299

type SumSym1 (arg6989586621680487299 :: t6989586621680486628 a6989586621680486648) = Sum arg6989586621680487299 Source #

data ProductSym0 :: forall t6989586621680486628 a6989586621680486649. (~>) (t6989586621680486628 a6989586621680486649) a6989586621680486649 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ProductSym0 :: TyFun (t6989586621680486628 a6989586621680486649) a6989586621680486649 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (arg6989586621680487301 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (arg6989586621680487301 :: t a) = Product arg6989586621680487301

type ProductSym1 (arg6989586621680487301 :: t6989586621680486628 a6989586621680486649) = Product arg6989586621680487301 Source #

data FoldrMSym0 :: forall a6989586621680486589 b6989586621680486590 m6989586621680486588 t6989586621680486587. (~>) ((~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) ((~>) b6989586621680486590 ((~>) (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrMSym0 :: TyFun (a6989586621680486589 ~> (b6989586621680486590 ~> m6989586621680486588 b6989586621680486590)) (b6989586621680486590 ~> (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a6989586621680486589 ~> (b6989586621680486590 ~> m6989586621680486588 b6989586621680486590)) (b6989586621680486590 ~> (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590)) -> Type) (a6989586621680487225 :: a6989586621680486589 ~> (b6989586621680486590 ~> m6989586621680486588 b6989586621680486590)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a6989586621680486589 ~> (b6989586621680486590 ~> m6989586621680486588 b6989586621680486590)) (b6989586621680486590 ~> (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590)) -> Type) (a6989586621680487225 :: a6989586621680486589 ~> (b6989586621680486590 ~> m6989586621680486588 b6989586621680486590)) = FoldrMSym1 a6989586621680487225 t6989586621680486587 :: TyFun b6989586621680486590 (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590) -> Type

data FoldrMSym1 (a6989586621680487225 :: (~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) :: forall t6989586621680486587. (~>) b6989586621680486590 ((~>) (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldrMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym1 d t) Source #

SuppressUnusedWarnings (FoldrMSym1 a6989586621680487225 t6989586621680486587 :: TyFun b6989586621680486590 (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680487225 t6989586621680486587 :: TyFun b6989586621680486590 (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590) -> Type) (a6989586621680487226 :: b6989586621680486590) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680487225 t6989586621680486587 :: TyFun b6989586621680486590 (t6989586621680486587 a6989586621680486589 ~> m6989586621680486588 b6989586621680486590) -> Type) (a6989586621680487226 :: b6989586621680486590) = FoldrMSym2 a6989586621680487225 a6989586621680487226 t6989586621680486587 :: TyFun (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590) -> Type

data FoldrMSym2 (a6989586621680487225 :: (~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) (a6989586621680487226 :: b6989586621680486590) :: forall t6989586621680486587. (~>) (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldrMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldrMSym2 a6989586621680487226 a6989586621680487225 t6989586621680486587 :: TyFun (t6989586621680486587 a6989586621680486589) (m6989586621680486588 b6989586621680486590) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680487226 a6989586621680487225 t :: TyFun (t a) (m b) -> Type) (a6989586621680487227 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680487226 a6989586621680487225 t :: TyFun (t a) (m b) -> Type) (a6989586621680487227 :: t a) = FoldrM a6989586621680487226 a6989586621680487225 a6989586621680487227

type FoldrMSym3 (a6989586621680487225 :: (~>) a6989586621680486589 ((~>) b6989586621680486590 (m6989586621680486588 b6989586621680486590))) (a6989586621680487226 :: b6989586621680486590) (a6989586621680487227 :: t6989586621680486587 a6989586621680486589) = FoldrM a6989586621680487225 a6989586621680487226 a6989586621680487227 Source #

data FoldlMSym0 :: forall b6989586621680486585 a6989586621680486586 m6989586621680486584 t6989586621680486583. (~>) ((~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) ((~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) (b6989586621680486585 ~> (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) (b6989586621680486585 ~> (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) -> Type) (a6989586621680487203 :: b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) (b6989586621680486585 ~> (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) -> Type) (a6989586621680487203 :: b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) = FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type

data FoldlMSym1 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) :: forall t6989586621680486583. (~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym1 d t) Source #

SuppressUnusedWarnings (FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type) (a6989586621680487204 :: b6989586621680486585) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type) (a6989586621680487204 :: b6989586621680486585) = FoldlMSym2 a6989586621680487203 a6989586621680487204 t6989586621680486583 :: TyFun (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585) -> Type

data FoldlMSym2 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) :: forall t6989586621680486583. (~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlMSym2 a6989586621680487204 a6989586621680487203 t6989586621680486583 :: TyFun (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680487204 a6989586621680487203 t :: TyFun (t a) (m b) -> Type) (a6989586621680487205 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680487204 a6989586621680487203 t :: TyFun (t a) (m b) -> Type) (a6989586621680487205 :: t a) = FoldlM a6989586621680487204 a6989586621680487203 a6989586621680487205

type FoldlMSym3 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) (a6989586621680487205 :: t6989586621680486583 a6989586621680486586) = FoldlM a6989586621680487203 a6989586621680487204 a6989586621680487205 Source #

data Traverse_Sym0 :: forall a6989586621680486581 f6989586621680486580 b6989586621680486582 t6989586621680486579. (~>) ((~>) a6989586621680486581 (f6989586621680486580 b6989586621680486582)) ((~>) (t6989586621680486579 a6989586621680486581) (f6989586621680486580 ())) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Traverse_Sym0 :: TyFun (a6989586621680486581 ~> f6989586621680486580 b6989586621680486582) (t6989586621680486579 a6989586621680486581 ~> f6989586621680486580 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a6989586621680486581 ~> f6989586621680486580 b6989586621680486582) (t6989586621680486579 a6989586621680486581 ~> f6989586621680486580 ()) -> Type) (a6989586621680487195 :: a6989586621680486581 ~> f6989586621680486580 b6989586621680486582) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a6989586621680486581 ~> f6989586621680486580 b6989586621680486582) (t6989586621680486579 a6989586621680486581 ~> f6989586621680486580 ()) -> Type) (a6989586621680487195 :: a6989586621680486581 ~> f6989586621680486580 b6989586621680486582) = Traverse_Sym1 a6989586621680487195 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486581) (f6989586621680486580 ()) -> Type

data Traverse_Sym1 (a6989586621680487195 :: (~>) a6989586621680486581 (f6989586621680486580 b6989586621680486582)) :: forall t6989586621680486579. (~>) (t6989586621680486579 a6989586621680486581) (f6989586621680486580 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (Traverse_Sym1 d t :: TyFun (t a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Traverse_Sym1 d t) Source #

SuppressUnusedWarnings (Traverse_Sym1 a6989586621680487195 t6989586621680486579 :: TyFun (t6989586621680486579 a6989586621680486581) (f6989586621680486580 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680487195 t :: TyFun (t a) (f ()) -> Type) (a6989586621680487196 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680487195 t :: TyFun (t a) (f ()) -> Type) (a6989586621680487196 :: t a) = Traverse_ a6989586621680487195 a6989586621680487196

type Traverse_Sym2 (a6989586621680487195 :: (~>) a6989586621680486581 (f6989586621680486580 b6989586621680486582)) (a6989586621680487196 :: t6989586621680486579 a6989586621680486581) = Traverse_ a6989586621680487195 a6989586621680487196 Source #

data For_Sym0 :: forall t6989586621680486575 a6989586621680486577 f6989586621680486576 b6989586621680486578. (~>) (t6989586621680486575 a6989586621680486577) ((~>) ((~>) a6989586621680486577 (f6989586621680486576 b6989586621680486578)) (f6989586621680486576 ())) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (For_Sym0 :: TyFun (t6989586621680486575 a6989586621680486577) ((a6989586621680486577 ~> f6989586621680486576 b6989586621680486578) ~> f6989586621680486576 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t6989586621680486575 a6989586621680486577) ((a6989586621680486577 ~> f6989586621680486576 b6989586621680486578) ~> f6989586621680486576 ()) -> Type) (a6989586621680487189 :: t6989586621680486575 a6989586621680486577) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t6989586621680486575 a6989586621680486577) ((a6989586621680486577 ~> f6989586621680486576 b6989586621680486578) ~> f6989586621680486576 ()) -> Type) (a6989586621680487189 :: t6989586621680486575 a6989586621680486577) = For_Sym1 a6989586621680487189 f6989586621680486576 b6989586621680486578 :: TyFun (a6989586621680486577 ~> f6989586621680486576 b6989586621680486578) (f6989586621680486576 ()) -> Type

data For_Sym1 (a6989586621680487189 :: t6989586621680486575 a6989586621680486577) :: forall f6989586621680486576 b6989586621680486578. (~>) ((~>) a6989586621680486577 (f6989586621680486576 b6989586621680486578)) (f6989586621680486576 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (For_Sym1 d f b :: TyFun (a ~> f b) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (For_Sym1 d f b) Source #

SuppressUnusedWarnings (For_Sym1 a6989586621680487189 f6989586621680486576 b6989586621680486578 :: TyFun (a6989586621680486577 ~> f6989586621680486576 b6989586621680486578) (f6989586621680486576 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680487189 f b :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680487190 :: a ~> f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680487189 f b :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680487190 :: a ~> f b) = For_ a6989586621680487189 a6989586621680487190

type For_Sym2 (a6989586621680487189 :: t6989586621680486575 a6989586621680486577) (a6989586621680487190 :: (~>) a6989586621680486577 (f6989586621680486576 b6989586621680486578)) = For_ a6989586621680487189 a6989586621680487190 Source #

data SequenceA_Sym0 :: forall t6989586621680486564 f6989586621680486565 a6989586621680486566. (~>) (t6989586621680486564 (f6989586621680486565 a6989586621680486566)) (f6989586621680486565 ()) Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SequenceA_Sym0 :: TyFun (t6989586621680486564 (f6989586621680486565 a6989586621680486566)) (f6989586621680486565 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680487164 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680487164 :: t (f a)) = SequenceA_ a6989586621680487164

type SequenceA_Sym1 (a6989586621680487164 :: t6989586621680486564 (f6989586621680486565 a6989586621680486566)) = SequenceA_ a6989586621680487164 Source #

data AsumSym0 :: forall t6989586621680486558 f6989586621680486559 a6989586621680486560. (~>) (t6989586621680486558 (f6989586621680486559 a6989586621680486560)) (f6989586621680486559 a6989586621680486560) Source #

Instances

Instances details
(SFoldable t, SAlternative f) => SingI (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AsumSym0 :: TyFun (t6989586621680486558 (f6989586621680486559 a6989586621680486560)) (f6989586621680486559 a6989586621680486560) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680487154 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680487154 :: t (f a)) = Asum a6989586621680487154

type AsumSym1 (a6989586621680487154 :: t6989586621680486558 (f6989586621680486559 a6989586621680486560)) = Asum a6989586621680487154 Source #

data MapM_Sym0 :: forall a6989586621680486573 m6989586621680486572 b6989586621680486574 t6989586621680486571. (~>) ((~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) ((~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) (t6989586621680486571 a6989586621680486573 ~> m6989586621680486572 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) (t6989586621680486571 a6989586621680486573 ~> m6989586621680486572 ()) -> Type) (a6989586621680487177 :: a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) (t6989586621680486571 a6989586621680486573 ~> m6989586621680486572 ()) -> Type) (a6989586621680487177 :: a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) = MapM_Sym1 a6989586621680487177 t6989586621680486571 :: TyFun (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()) -> Type

data MapM_Sym1 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) :: forall t6989586621680486571. (~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d t :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MapM_Sym1 d t) Source #

SuppressUnusedWarnings (MapM_Sym1 a6989586621680487177 t6989586621680486571 :: TyFun (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680487177 t :: TyFun (t a) (m ()) -> Type) (a6989586621680487178 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680487177 t :: TyFun (t a) (m ()) -> Type) (a6989586621680487178 :: t a) = MapM_ a6989586621680487177 a6989586621680487178

type MapM_Sym2 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) (a6989586621680487178 :: t6989586621680486571 a6989586621680486573) = MapM_ a6989586621680487177 a6989586621680487178 Source #

data ForM_Sym0 :: forall t6989586621680486567 a6989586621680486569 m6989586621680486568 b6989586621680486570. (~>) (t6989586621680486567 a6989586621680486569) ((~>) ((~>) a6989586621680486569 (m6989586621680486568 b6989586621680486570)) (m6989586621680486568 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ForM_Sym0 :: TyFun (t6989586621680486567 a6989586621680486569) ((a6989586621680486569 ~> m6989586621680486568 b6989586621680486570) ~> m6989586621680486568 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t6989586621680486567 a6989586621680486569) ((a6989586621680486569 ~> m6989586621680486568 b6989586621680486570) ~> m6989586621680486568 ()) -> Type) (a6989586621680487171 :: t6989586621680486567 a6989586621680486569) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t6989586621680486567 a6989586621680486569) ((a6989586621680486569 ~> m6989586621680486568 b6989586621680486570) ~> m6989586621680486568 ()) -> Type) (a6989586621680487171 :: t6989586621680486567 a6989586621680486569) = ForM_Sym1 a6989586621680487171 m6989586621680486568 b6989586621680486570 :: TyFun (a6989586621680486569 ~> m6989586621680486568 b6989586621680486570) (m6989586621680486568 ()) -> Type

data ForM_Sym1 (a6989586621680487171 :: t6989586621680486567 a6989586621680486569) :: forall m6989586621680486568 b6989586621680486570. (~>) ((~>) a6989586621680486569 (m6989586621680486568 b6989586621680486570)) (m6989586621680486568 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (ForM_Sym1 d m b :: TyFun (a ~> m b) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ForM_Sym1 d m b) Source #

SuppressUnusedWarnings (ForM_Sym1 a6989586621680487171 m6989586621680486568 b6989586621680486570 :: TyFun (a6989586621680486569 ~> m6989586621680486568 b6989586621680486570) (m6989586621680486568 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680487171 m b :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680487172 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680487171 m b :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680487172 :: a ~> m b) = ForM_ a6989586621680487171 a6989586621680487172

type ForM_Sym2 (a6989586621680487171 :: t6989586621680486567 a6989586621680486569) (a6989586621680487172 :: (~>) a6989586621680486569 (m6989586621680486568 b6989586621680486570)) = ForM_ a6989586621680487171 a6989586621680487172 Source #

data Sequence_Sym0 :: forall t6989586621680486561 m6989586621680486562 a6989586621680486563. (~>) (t6989586621680486561 (m6989586621680486562 a6989586621680486563)) (m6989586621680486562 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t6989586621680486561 (m6989586621680486562 a6989586621680486563)) (m6989586621680486562 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680487159 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680487159 :: t (m a)) = Sequence_ a6989586621680487159

type Sequence_Sym1 (a6989586621680487159 :: t6989586621680486561 (m6989586621680486562 a6989586621680486563)) = Sequence_ a6989586621680487159 Source #

data MsumSym0 :: forall t6989586621680486555 m6989586621680486556 a6989586621680486557. (~>) (t6989586621680486555 (m6989586621680486556 a6989586621680486557)) (m6989586621680486556 a6989586621680486557) Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MsumSym0 :: TyFun (t6989586621680486555 (m6989586621680486556 a6989586621680486557)) (m6989586621680486556 a6989586621680486557) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680487149 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680487149 :: t (m a)) = Msum a6989586621680487149

type MsumSym1 (a6989586621680487149 :: t6989586621680486555 (m6989586621680486556 a6989586621680486557)) = Msum a6989586621680487149 Source #

data ConcatSym0 :: forall t6989586621680486553 a6989586621680486554. (~>) (t6989586621680486553 [a6989586621680486554]) [a6989586621680486554] Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t6989586621680486553 [a6989586621680486554]) [a6989586621680486554] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680487135 :: t [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680487135 :: t [a]) = Concat a6989586621680487135

type ConcatSym1 (a6989586621680487135 :: t6989586621680486553 [a6989586621680486554]) = Concat a6989586621680487135 Source #

data ConcatMapSym0 :: forall a6989586621680486551 b6989586621680486552 t6989586621680486550. (~>) ((~>) a6989586621680486551 [b6989586621680486552]) ((~>) (t6989586621680486550 a6989586621680486551) [b6989586621680486552]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a6989586621680486551 ~> [b6989586621680486552]) (t6989586621680486550 a6989586621680486551 ~> [b6989586621680486552]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a6989586621680486551 ~> [b6989586621680486552]) (t6989586621680486550 a6989586621680486551 ~> [b6989586621680486552]) -> Type) (a6989586621680487119 :: a6989586621680486551 ~> [b6989586621680486552]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a6989586621680486551 ~> [b6989586621680486552]) (t6989586621680486550 a6989586621680486551 ~> [b6989586621680486552]) -> Type) (a6989586621680487119 :: a6989586621680486551 ~> [b6989586621680486552]) = ConcatMapSym1 a6989586621680487119 t6989586621680486550 :: TyFun (t6989586621680486550 a6989586621680486551) [b6989586621680486552] -> Type

data ConcatMapSym1 (a6989586621680487119 :: (~>) a6989586621680486551 [b6989586621680486552]) :: forall t6989586621680486550. (~>) (t6989586621680486550 a6989586621680486551) [b6989586621680486552] Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (ConcatMapSym1 d t :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ConcatMapSym1 d t) Source #

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680487119 t6989586621680486550 :: TyFun (t6989586621680486550 a6989586621680486551) [b6989586621680486552] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680487119 t :: TyFun (t a) [b] -> Type) (a6989586621680487120 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680487119 t :: TyFun (t a) [b] -> Type) (a6989586621680487120 :: t a) = ConcatMap a6989586621680487119 a6989586621680487120

type ConcatMapSym2 (a6989586621680487119 :: (~>) a6989586621680486551 [b6989586621680486552]) (a6989586621680487120 :: t6989586621680486550 a6989586621680486551) = ConcatMap a6989586621680487119 a6989586621680487120 Source #

data AndSym0 :: forall t6989586621680486549. (~>) (t6989586621680486549 Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AndSym0 :: TyFun (t6989586621680486549 Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487110 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487110 :: t Bool) = And a6989586621680487110

type AndSym1 (a6989586621680487110 :: t6989586621680486549 Bool) = And a6989586621680487110 Source #

data OrSym0 :: forall t6989586621680486548. (~>) (t6989586621680486548 Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing OrSym0 Source #

SuppressUnusedWarnings (OrSym0 :: TyFun (t6989586621680486548 Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487101 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680487101 :: t Bool) = Or a6989586621680487101

type OrSym1 (a6989586621680487101 :: t6989586621680486548 Bool) = Or a6989586621680487101 Source #

data AnySym0 :: forall a6989586621680486547 t6989586621680486546. (~>) ((~>) a6989586621680486547 Bool) ((~>) (t6989586621680486546 a6989586621680486547) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AnySym0 :: TyFun (a6989586621680486547 ~> Bool) (t6989586621680486546 a6989586621680486547 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a6989586621680486547 ~> Bool) (t6989586621680486546 a6989586621680486547 ~> Bool) -> Type) (a6989586621680487088 :: a6989586621680486547 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a6989586621680486547 ~> Bool) (t6989586621680486546 a6989586621680486547 ~> Bool) -> Type) (a6989586621680487088 :: a6989586621680486547 ~> Bool) = AnySym1 a6989586621680487088 t6989586621680486546 :: TyFun (t6989586621680486546 a6989586621680486547) Bool -> Type

data AnySym1 (a6989586621680487088 :: (~>) a6989586621680486547 Bool) :: forall t6989586621680486546. (~>) (t6989586621680486546 a6989586621680486547) Bool Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AnySym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AnySym1 d t) Source #

SuppressUnusedWarnings (AnySym1 a6989586621680487088 t6989586621680486546 :: TyFun (t6989586621680486546 a6989586621680486547) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680487088 t :: TyFun (t a) Bool -> Type) (a6989586621680487089 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680487088 t :: TyFun (t a) Bool -> Type) (a6989586621680487089 :: t a) = Any a6989586621680487088 a6989586621680487089

type AnySym2 (a6989586621680487088 :: (~>) a6989586621680486547 Bool) (a6989586621680487089 :: t6989586621680486546 a6989586621680486547) = Any a6989586621680487088 a6989586621680487089 Source #

data AllSym0 :: forall a6989586621680486545 t6989586621680486544. (~>) ((~>) a6989586621680486545 Bool) ((~>) (t6989586621680486544 a6989586621680486545) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AllSym0 :: TyFun (a6989586621680486545 ~> Bool) (t6989586621680486544 a6989586621680486545 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a6989586621680486545 ~> Bool) (t6989586621680486544 a6989586621680486545 ~> Bool) -> Type) (a6989586621680487075 :: a6989586621680486545 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a6989586621680486545 ~> Bool) (t6989586621680486544 a6989586621680486545 ~> Bool) -> Type) (a6989586621680487075 :: a6989586621680486545 ~> Bool) = AllSym1 a6989586621680487075 t6989586621680486544 :: TyFun (t6989586621680486544 a6989586621680486545) Bool -> Type

data AllSym1 (a6989586621680487075 :: (~>) a6989586621680486545 Bool) :: forall t6989586621680486544. (~>) (t6989586621680486544 a6989586621680486545) Bool Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AllSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AllSym1 d t) Source #

SuppressUnusedWarnings (AllSym1 a6989586621680487075 t6989586621680486544 :: TyFun (t6989586621680486544 a6989586621680486545) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680487075 t :: TyFun (t a) Bool -> Type) (a6989586621680487076 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680487075 t :: TyFun (t a) Bool -> Type) (a6989586621680487076 :: t a) = All a6989586621680487075 a6989586621680487076

type AllSym2 (a6989586621680487075 :: (~>) a6989586621680486545 Bool) (a6989586621680487076 :: t6989586621680486544 a6989586621680486545) = All a6989586621680487075 a6989586621680487076 Source #

data MaximumBySym0 :: forall a6989586621680486543 t6989586621680486542. (~>) ((~>) a6989586621680486543 ((~>) a6989586621680486543 Ordering)) ((~>) (t6989586621680486542 a6989586621680486543) a6989586621680486543) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a6989586621680486543 ~> (a6989586621680486543 ~> Ordering)) (t6989586621680486542 a6989586621680486543 ~> a6989586621680486543) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a6989586621680486543 ~> (a6989586621680486543 ~> Ordering)) (t6989586621680486542 a6989586621680486543 ~> a6989586621680486543) -> Type) (a6989586621680487050 :: a6989586621680486543 ~> (a6989586621680486543 ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a6989586621680486543 ~> (a6989586621680486543 ~> Ordering)) (t6989586621680486542 a6989586621680486543 ~> a6989586621680486543) -> Type) (a6989586621680487050 :: a6989586621680486543 ~> (a6989586621680486543 ~> Ordering)) = MaximumBySym1 a6989586621680487050 t6989586621680486542 :: TyFun (t6989586621680486542 a6989586621680486543) a6989586621680486543 -> Type

data MaximumBySym1 (a6989586621680487050 :: (~>) a6989586621680486543 ((~>) a6989586621680486543 Ordering)) :: forall t6989586621680486542. (~>) (t6989586621680486542 a6989586621680486543) a6989586621680486543 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MaximumBySym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MaximumBySym1 d t) Source #

SuppressUnusedWarnings (MaximumBySym1 a6989586621680487050 t6989586621680486542 :: TyFun (t6989586621680486542 a6989586621680486543) a6989586621680486543 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680487050 t :: TyFun (t a) a -> Type) (a6989586621680487051 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680487050 t :: TyFun (t a) a -> Type) (a6989586621680487051 :: t a) = MaximumBy a6989586621680487050 a6989586621680487051

type MaximumBySym2 (a6989586621680487050 :: (~>) a6989586621680486543 ((~>) a6989586621680486543 Ordering)) (a6989586621680487051 :: t6989586621680486542 a6989586621680486543) = MaximumBy a6989586621680487050 a6989586621680487051 Source #

data MinimumBySym0 :: forall a6989586621680486541 t6989586621680486540. (~>) ((~>) a6989586621680486541 ((~>) a6989586621680486541 Ordering)) ((~>) (t6989586621680486540 a6989586621680486541) a6989586621680486541) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a6989586621680486541 ~> (a6989586621680486541 ~> Ordering)) (t6989586621680486540 a6989586621680486541 ~> a6989586621680486541) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a6989586621680486541 ~> (a6989586621680486541 ~> Ordering)) (t6989586621680486540 a6989586621680486541 ~> a6989586621680486541) -> Type) (a6989586621680487025 :: a6989586621680486541 ~> (a6989586621680486541 ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a6989586621680486541 ~> (a6989586621680486541 ~> Ordering)) (t6989586621680486540 a6989586621680486541 ~> a6989586621680486541) -> Type) (a6989586621680487025 :: a6989586621680486541 ~> (a6989586621680486541 ~> Ordering)) = MinimumBySym1 a6989586621680487025 t6989586621680486540 :: TyFun (t6989586621680486540 a6989586621680486541) a6989586621680486541 -> Type

data MinimumBySym1 (a6989586621680487025 :: (~>) a6989586621680486541 ((~>) a6989586621680486541 Ordering)) :: forall t6989586621680486540. (~>) (t6989586621680486540 a6989586621680486541) a6989586621680486541 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MinimumBySym1 d t :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MinimumBySym1 d t) Source #

SuppressUnusedWarnings (MinimumBySym1 a6989586621680487025 t6989586621680486540 :: TyFun (t6989586621680486540 a6989586621680486541) a6989586621680486541 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680487025 t :: TyFun (t a) a -> Type) (a6989586621680487026 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680487025 t :: TyFun (t a) a -> Type) (a6989586621680487026 :: t a) = MinimumBy a6989586621680487025 a6989586621680487026

type MinimumBySym2 (a6989586621680487025 :: (~>) a6989586621680486541 ((~>) a6989586621680486541 Ordering)) (a6989586621680487026 :: t6989586621680486540 a6989586621680486541) = MinimumBy a6989586621680487025 a6989586621680487026 Source #

data NotElemSym0 :: forall a6989586621680486539 t6989586621680486538. (~>) a6989586621680486539 ((~>) (t6989586621680486538 a6989586621680486539) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NotElemSym0 :: TyFun a6989586621680486539 (t6989586621680486538 a6989586621680486539 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a6989586621680486539 (t6989586621680486538 a6989586621680486539 ~> Bool) -> Type) (a6989586621680487017 :: a6989586621680486539) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a6989586621680486539 (t6989586621680486538 a6989586621680486539 ~> Bool) -> Type) (a6989586621680487017 :: a6989586621680486539) = NotElemSym1 a6989586621680487017 t6989586621680486538 :: TyFun (t6989586621680486538 a6989586621680486539) Bool -> Type

data NotElemSym1 (a6989586621680487017 :: a6989586621680486539) :: forall t6989586621680486538. (~>) (t6989586621680486538 a6989586621680486539) Bool Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d t :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (NotElemSym1 d t) Source #

SuppressUnusedWarnings (NotElemSym1 a6989586621680487017 t6989586621680486538 :: TyFun (t6989586621680486538 a6989586621680486539) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680487017 t :: TyFun (t a) Bool -> Type) (a6989586621680487018 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680487017 t :: TyFun (t a) Bool -> Type) (a6989586621680487018 :: t a) = NotElem a6989586621680487017 a6989586621680487018

type NotElemSym2 (a6989586621680487017 :: a6989586621680486539) (a6989586621680487018 :: t6989586621680486538 a6989586621680486539) = NotElem a6989586621680487017 a6989586621680487018 Source #

data FindSym0 :: forall a6989586621680486537 t6989586621680486536. (~>) ((~>) a6989586621680486537 Bool) ((~>) (t6989586621680486536 a6989586621680486537) (Maybe a6989586621680486537)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FindSym0 :: TyFun (a6989586621680486537 ~> Bool) (t6989586621680486536 a6989586621680486537 ~> Maybe a6989586621680486537) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a6989586621680486537 ~> Bool) (t6989586621680486536 a6989586621680486537 ~> Maybe a6989586621680486537) -> Type) (a6989586621680486990 :: a6989586621680486537 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a6989586621680486537 ~> Bool) (t6989586621680486536 a6989586621680486537 ~> Maybe a6989586621680486537) -> Type) (a6989586621680486990 :: a6989586621680486537 ~> Bool) = FindSym1 a6989586621680486990 t6989586621680486536 :: TyFun (t6989586621680486536 a6989586621680486537) (Maybe a6989586621680486537) -> Type

data FindSym1 (a6989586621680486990 :: (~>) a6989586621680486537 Bool) :: forall t6989586621680486536. (~>) (t6989586621680486536 a6989586621680486537) (Maybe a6989586621680486537) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FindSym1 d t :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FindSym1 d t) Source #

SuppressUnusedWarnings (FindSym1 a6989586621680486990 t6989586621680486536 :: TyFun (t6989586621680486536 a6989586621680486537) (Maybe a6989586621680486537) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680486990 t :: TyFun (t a) (Maybe a) -> Type) (a6989586621680486991 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680486990 t :: TyFun (t a) (Maybe a) -> Type) (a6989586621680486991 :: t a) = Find a6989586621680486990 a6989586621680486991

type FindSym2 (a6989586621680486990 :: (~>) a6989586621680486537 Bool) (a6989586621680486991 :: t6989586621680486536 a6989586621680486537) = Find a6989586621680486990 a6989586621680486991 Source #