singletons-2.6: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Applicative

Description

Defines the promoted and singled versions of the Applicative type class.

Synopsis
  • class PApplicative (f :: Type -> Type) where
    • type Pure (arg :: a) :: f a
    • type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b
    • type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c
    • type (arg :: f a) *> (arg :: f b) :: f b
    • type (arg :: f a) <* (arg :: f b) :: f a
  • class SFunctor f => SApplicative (f :: Type -> Type) where
  • class PAlternative (f :: Type -> Type) where
    • type Empty :: f a
    • type (arg :: f a) <|> (arg :: f a) :: f a
  • class SApplicative f => SAlternative (f :: Type -> Type) where
  • type family Sing :: k -> Type
  • data SConst :: forall (k :: Type) (a :: Type) (b :: k). Const a b -> Type where
  • data Const a (b :: k)
  • type family GetConst (x :: Const a b) :: a where ...
  • type family (a :: (~>) a b) <$> (a :: f a) :: f b where ...
  • (%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b)
  • type family (arg :: a) <$ (arg :: f b) :: f a
  • (%<$) :: forall a b (t :: a) (t :: f b). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a)
  • type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ...
  • (%<**>) :: forall f a b (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b)
  • type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ...
  • sLiftA :: forall a b f (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b)
  • type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ...
  • sLiftA3 :: forall a b c d f (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d)
  • type family Optional (a :: f a) :: f (Maybe a) where ...
  • sOptional :: forall f a (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a))
  • data PureSym0 :: forall a6989586621679566951 f6989586621679566950. (~>) a6989586621679566951 (f6989586621679566950 a6989586621679566951)
  • type PureSym1 (arg6989586621679567361 :: a6989586621679566951) = Pure arg6989586621679567361
  • data (<*>@#@$) :: forall f6989586621679566950 a6989586621679566952 b6989586621679566953. (~>) (f6989586621679566950 ((~>) a6989586621679566952 b6989586621679566953)) ((~>) (f6989586621679566950 a6989586621679566952) (f6989586621679566950 b6989586621679566953))
  • data (<*>@#@$$) (arg6989586621679567363 :: f6989586621679566950 ((~>) a6989586621679566952 b6989586621679566953)) :: (~>) (f6989586621679566950 a6989586621679566952) (f6989586621679566950 b6989586621679566953)
  • type (<*>@#@$$$) (arg6989586621679567363 :: f6989586621679566950 ((~>) a6989586621679566952 b6989586621679566953)) (arg6989586621679567364 :: f6989586621679566950 a6989586621679566952) = (<*>) arg6989586621679567363 arg6989586621679567364
  • data (*>@#@$) :: forall f6989586621679566950 a6989586621679566957 b6989586621679566958. (~>) (f6989586621679566950 a6989586621679566957) ((~>) (f6989586621679566950 b6989586621679566958) (f6989586621679566950 b6989586621679566958))
  • data (*>@#@$$) (arg6989586621679567373 :: f6989586621679566950 a6989586621679566957) :: forall b6989586621679566958. (~>) (f6989586621679566950 b6989586621679566958) (f6989586621679566950 b6989586621679566958)
  • type (*>@#@$$$) (arg6989586621679567373 :: f6989586621679566950 a6989586621679566957) (arg6989586621679567374 :: f6989586621679566950 b6989586621679566958) = (*>) arg6989586621679567373 arg6989586621679567374
  • data (<*@#@$) :: forall f6989586621679566950 a6989586621679566959 b6989586621679566960. (~>) (f6989586621679566950 a6989586621679566959) ((~>) (f6989586621679566950 b6989586621679566960) (f6989586621679566950 a6989586621679566959))
  • data (<*@#@$$) (arg6989586621679567377 :: f6989586621679566950 a6989586621679566959) :: forall b6989586621679566960. (~>) (f6989586621679566950 b6989586621679566960) (f6989586621679566950 a6989586621679566959)
  • type (<*@#@$$$) (arg6989586621679567377 :: f6989586621679566950 a6989586621679566959) (arg6989586621679567378 :: f6989586621679566950 b6989586621679566960) = (<*) arg6989586621679567377 arg6989586621679567378
  • type EmptySym0 = Empty
  • data (<|>@#@$) :: forall f6989586621679567025 a6989586621679567027. (~>) (f6989586621679567025 a6989586621679567027) ((~>) (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027))
  • data (<|>@#@$$) (arg6989586621679567485 :: f6989586621679567025 a6989586621679567027) :: (~>) (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027)
  • type (<|>@#@$$$) (arg6989586621679567485 :: f6989586621679567025 a6989586621679567027) (arg6989586621679567486 :: f6989586621679567025 a6989586621679567027) = (<|>) arg6989586621679567485 arg6989586621679567486
  • data ConstSym0 :: forall (a6989586621679090105 :: Type) k6989586621679090104 (b6989586621679090106 :: k6989586621679090104). (~>) a6989586621679090105 (Const (a6989586621679090105 :: Type) (b6989586621679090106 :: k6989586621679090104))
  • type ConstSym1 (t6989586621680754547 :: a6989586621679090105) = 'Const t6989586621680754547
  • data GetConstSym0 :: forall a6989586621680754815 b6989586621680754816. (~>) (Const a6989586621680754815 b6989586621680754816) a6989586621680754815
  • type GetConstSym1 (x6989586621680754817 :: Const a6989586621680754815 b6989586621680754816) = GetConst x6989586621680754817
  • data (<$>@#@$) :: forall a6989586621679737122 b6989586621679737123 f6989586621679737121. (~>) ((~>) a6989586621679737122 b6989586621679737123) ((~>) (f6989586621679737121 a6989586621679737122) (f6989586621679737121 b6989586621679737123))
  • data (<$>@#@$$) (a6989586621679737203 :: (~>) a6989586621679737122 b6989586621679737123) :: forall f6989586621679737121. (~>) (f6989586621679737121 a6989586621679737122) (f6989586621679737121 b6989586621679737123)
  • type (<$>@#@$$$) (a6989586621679737203 :: (~>) a6989586621679737122 b6989586621679737123) (a6989586621679737204 :: f6989586621679737121 a6989586621679737122) = (<$>) a6989586621679737203 a6989586621679737204
  • data (<$@#@$) :: forall a6989586621679566948 f6989586621679566945 b6989586621679566949. (~>) a6989586621679566948 ((~>) (f6989586621679566945 b6989586621679566949) (f6989586621679566945 a6989586621679566948))
  • data (<$@#@$$) (arg6989586621679567341 :: a6989586621679566948) :: forall f6989586621679566945 b6989586621679566949. (~>) (f6989586621679566945 b6989586621679566949) (f6989586621679566945 a6989586621679566948)
  • type (<$@#@$$$) (arg6989586621679567341 :: a6989586621679566948) (arg6989586621679567342 :: f6989586621679566945 b6989586621679566949) = (<$) arg6989586621679567341 arg6989586621679567342
  • data (<**>@#@$) :: forall f6989586621679566910 a6989586621679566911 b6989586621679566912. (~>) (f6989586621679566910 a6989586621679566911) ((~>) (f6989586621679566910 ((~>) a6989586621679566911 b6989586621679566912)) (f6989586621679566910 b6989586621679566912))
  • data (<**>@#@$$) (a6989586621679567321 :: f6989586621679566910 a6989586621679566911) :: forall b6989586621679566912. (~>) (f6989586621679566910 ((~>) a6989586621679566911 b6989586621679566912)) (f6989586621679566910 b6989586621679566912)
  • type (<**>@#@$$$) (a6989586621679567321 :: f6989586621679566910 a6989586621679566911) (a6989586621679567322 :: f6989586621679566910 ((~>) a6989586621679566911 b6989586621679566912)) = (<**>) a6989586621679567321 a6989586621679567322
  • data LiftASym0 :: forall a6989586621679566908 b6989586621679566909 f6989586621679566907. (~>) ((~>) a6989586621679566908 b6989586621679566909) ((~>) (f6989586621679566907 a6989586621679566908) (f6989586621679566907 b6989586621679566909))
  • data LiftASym1 (a6989586621679567311 :: (~>) a6989586621679566908 b6989586621679566909) :: forall f6989586621679566907. (~>) (f6989586621679566907 a6989586621679566908) (f6989586621679566907 b6989586621679566909)
  • type LiftASym2 (a6989586621679567311 :: (~>) a6989586621679566908 b6989586621679566909) (a6989586621679567312 :: f6989586621679566907 a6989586621679566908) = LiftA a6989586621679567311 a6989586621679567312
  • data LiftA2Sym0 :: forall a6989586621679566954 b6989586621679566955 c6989586621679566956 f6989586621679566950. (~>) ((~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) ((~>) (f6989586621679566950 a6989586621679566954) ((~>) (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956)))
  • data LiftA2Sym1 (arg6989586621679567367 :: (~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) :: forall f6989586621679566950. (~>) (f6989586621679566950 a6989586621679566954) ((~>) (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956))
  • data LiftA2Sym2 (arg6989586621679567367 :: (~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) (arg6989586621679567368 :: f6989586621679566950 a6989586621679566954) :: (~>) (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956)
  • type LiftA2Sym3 (arg6989586621679567367 :: (~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) (arg6989586621679567368 :: f6989586621679566950 a6989586621679566954) (arg6989586621679567369 :: f6989586621679566950 b6989586621679566955) = LiftA2 arg6989586621679567367 arg6989586621679567368 arg6989586621679567369
  • data LiftA3Sym0 :: forall a6989586621679566903 b6989586621679566904 c6989586621679566905 d6989586621679566906 f6989586621679566902. (~>) ((~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) ((~>) (f6989586621679566902 a6989586621679566903) ((~>) (f6989586621679566902 b6989586621679566904) ((~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906))))
  • data LiftA3Sym1 (a6989586621679567299 :: (~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) :: forall f6989586621679566902. (~>) (f6989586621679566902 a6989586621679566903) ((~>) (f6989586621679566902 b6989586621679566904) ((~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906)))
  • data LiftA3Sym2 (a6989586621679567299 :: (~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) (a6989586621679567300 :: f6989586621679566902 a6989586621679566903) :: (~>) (f6989586621679566902 b6989586621679566904) ((~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906))
  • data LiftA3Sym3 (a6989586621679567299 :: (~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) (a6989586621679567300 :: f6989586621679566902 a6989586621679566903) (a6989586621679567301 :: f6989586621679566902 b6989586621679566904) :: (~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906)
  • data OptionalSym0 :: forall f6989586621681262005 a6989586621681262006. (~>) (f6989586621681262005 a6989586621681262006) (f6989586621681262005 (Maybe a6989586621681262006))
  • type OptionalSym1 (a6989586621681262043 :: f6989586621681262005 a6989586621681262006) = Optional a6989586621681262043

Documentation

class PApplicative (f :: Type -> Type) Source #

Associated Types

type Pure (arg :: a) :: f a Source #

type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #

type (<*>) a a = Apply (Apply TFHelper_6989586621679567383Sym0 a) a Source #

type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c Source #

type LiftA2 a a a = Apply (Apply (Apply LiftA2_6989586621679567400Sym0 a) a) a Source #

type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #

type (*>) a a = Apply (Apply TFHelper_6989586621679567418Sym0 a) a Source #

type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #

type (<*) a a = Apply (Apply TFHelper_6989586621679567430Sym0 a) a Source #

Instances

Instances details
PApplicative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Either e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

class SFunctor f => SApplicative (f :: Type -> Type) where Source #

Minimal complete definition

sPure

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #

(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #

default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679567383Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #

sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #

default sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) ~ Apply (Apply (Apply LiftA2_6989586621679567400Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #

(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #

default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679567418Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #

(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #

default (%<*) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (<*@#@$) t) t :: f a) ~ Apply (Apply TFHelper_6989586621679567430Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) Source #

Instances

Instances details
SApplicative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: [a ~> b]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Maybe (a ~> b)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: NonEmpty (a ~> b)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Identity (a ~> b)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Max (a ~> b)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Min (a ~> b)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Option (a ~> b)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Dual (a ~> b)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Product (a ~> b)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Sum (a ~> b)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: First (a ~> b)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: First a) (t :: First b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Last (a ~> b)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SApplicative (Either e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Either e (a ~> b)) (t :: Either e a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

class PAlternative (f :: Type -> Type) Source #

Associated Types

type Empty :: f a Source #

type (arg :: f a) <|> (arg :: f a) :: f a infixl 3 Source #

Instances

Instances details
PAlternative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

PAlternative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Empty :: f a Source #

type arg <|> arg :: f a Source #

class SApplicative f => SAlternative (f :: Type -> Type) where Source #

Methods

sEmpty :: forall a. Sing (EmptySym0 :: f a) Source #

(%<|>) :: forall a (t :: f a) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t :: f a) infixl 3 Source #

Instances

Instances details
SAlternative [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

SAlternative Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

SAlternative Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t) Source #

type family Sing :: k -> Type Source #

The singleton kind-indexed type family.

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.TypeError

type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SOption :: Option a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SWrappedMonoid :: WrappedMonoid m -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Internal

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Internal

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SConst :: forall (k :: Type) (a :: Type) (b :: k). Const a b -> Type where Source #

Constructors

SConst 

Fields

Instances

Instances details
SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0)

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0)

data Const a (b :: k) #

Instances

Instances details
Generic1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a) :: k -> Type

Methods

from1 :: forall (a0 :: k0). Const a a0 -> Rep1 (Const a) a0

to1 :: forall (a0 :: k0). Rep1 (Const a) a0 -> Const a a0

Unbox a => Vector Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (Const a b) -> m (Vector (Const a b))

basicUnsafeThaw :: PrimMonad m => Vector (Const a b) -> m (Mutable Vector (PrimState m) (Const a b))

basicLength :: Vector (Const a b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b)

basicUnsafeIndexM :: Monad m => Vector (Const a b) -> Int -> m (Const a b)

basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (Const a b) -> Vector (Const a b) -> m ()

elemseq :: Vector (Const a b) -> Const a b -> b0 -> b0

Unbox a => MVector MVector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Const a b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b)

basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (Const a b))

basicInitialize :: PrimMonad m => MVector (PrimState m) (Const a b) -> m ()

basicUnsafeReplicate :: PrimMonad m => Int -> Const a b -> m (MVector (PrimState m) (Const a b))

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> m (Const a b)

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> Const a b -> m ()

basicClear :: PrimMonad m => MVector (PrimState m) (Const a b) -> m ()

basicSet :: PrimMonad m => MVector (PrimState m) (Const a b) -> Const a b -> m ()

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (Const a b) -> MVector (PrimState m) (Const a b) -> m ()

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (Const a b) -> MVector (PrimState m) (Const a b) -> m ()

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (Const a b) -> Int -> m (MVector (PrimState m) (Const a b))

Bifunctor (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d

first :: (a -> b) -> Const a c -> Const b c

second :: (b -> c) -> Const a b -> Const a c

Eq2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool

Ord2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering

Show2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS

Read2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b)

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b]

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b)

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b]

Functor (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b

(<$) :: a -> Const m b -> Const m a

Monoid m => Applicative (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a

(<*>) :: Const m (a -> b) -> Const m a -> Const m b

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c

(*>) :: Const m a -> Const m b -> Const m b

(<*) :: Const m a -> Const m b -> Const m a

Foldable (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0

foldr :: (a -> b -> b) -> b -> Const m a -> b

foldr' :: (a -> b -> b) -> b -> Const m a -> b

foldl :: (b -> a -> b) -> b -> Const m a -> b

foldl' :: (b -> a -> b) -> b -> Const m a -> b

foldr1 :: (a -> a -> a) -> Const m a -> a

foldl1 :: (a -> a -> a) -> Const m a -> a

toList :: Const m a -> [a]

null :: Const m a -> Bool

length :: Const m a -> Int

elem :: Eq a => a -> Const m a -> Bool

maximum :: Ord a => Const m a -> a

minimum :: Ord a => Const m a -> a

sum :: Num a => Const m a -> a

product :: Num a => Const m a -> a

Traversable (Const m :: Type -> Type) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b)

sequenceA :: Applicative f => Const m (f a) -> f (Const m a)

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b)

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a)

Eq a => Eq1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool

Ord a => Ord1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering

Read a => Read1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0)

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0]

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0)

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0]

Show a => Show1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Const m (a ~> b)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Const m a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

STraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

Methods

sTraverse :: forall a (f :: Type -> Type) b (t :: a ~> f b) (t :: Const m a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t) Source #

sSequenceA :: forall (f :: Type -> Type) a (t :: Const m (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t) Source #

sMapM :: forall a (m0 :: Type -> Type) b (t :: a ~> m0 b) (t :: Const m a). SMonad m0 => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t) Source #

sSequence :: forall (m0 :: Type -> Type) a (t :: Const m (m0 a)). SMonad m0 => Sing t -> Sing (Apply SequenceSym0 t) Source #

PTraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

Associated Types

type Traverse arg arg :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg :: m (t b) Source #

type Sequence arg :: m (t a) Source #

SingI (ConstSym0 :: TyFun a6989586621679090105 (Const a6989586621679090105 b6989586621679090106) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679090105 (Const a6989586621679090105 b6989586621679090106) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a6989586621680754815 b6989586621680754816) a6989586621680754815 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Bounded a => Bounded (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b

maxBound :: Const a b

Enum a => Enum (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b

pred :: Const a b -> Const a b

toEnum :: Int -> Const a b

fromEnum :: Const a b -> Int

enumFrom :: Const a b -> [Const a b]

enumFromThen :: Const a b -> Const a b -> [Const a b]

enumFromTo :: Const a b -> Const a b -> [Const a b]

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b]

Eq a => Eq (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool

(/=) :: Const a b -> Const a b -> Bool

Floating a => Floating (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b

exp :: Const a b -> Const a b

log :: Const a b -> Const a b

sqrt :: Const a b -> Const a b

(**) :: Const a b -> Const a b -> Const a b

logBase :: Const a b -> Const a b -> Const a b

sin :: Const a b -> Const a b

cos :: Const a b -> Const a b

tan :: Const a b -> Const a b

asin :: Const a b -> Const a b

acos :: Const a b -> Const a b

atan :: Const a b -> Const a b

sinh :: Const a b -> Const a b

cosh :: Const a b -> Const a b

tanh :: Const a b -> Const a b

asinh :: Const a b -> Const a b

acosh :: Const a b -> Const a b

atanh :: Const a b -> Const a b

log1p :: Const a b -> Const a b

expm1 :: Const a b -> Const a b

log1pexp :: Const a b -> Const a b

log1mexp :: Const a b -> Const a b

Fractional a => Fractional (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b

recip :: Const a b -> Const a b

fromRational :: Rational -> Const a b

Integral a => Integral (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b

rem :: Const a b -> Const a b -> Const a b

div :: Const a b -> Const a b -> Const a b

mod :: Const a b -> Const a b -> Const a b

quotRem :: Const a b -> Const a b -> (Const a b, Const a b)

divMod :: Const a b -> Const a b -> (Const a b, Const a b)

toInteger :: Const a b -> Integer

(Typeable k, Data a, Typeable b) => Data (Const a b) 
Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b)

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b)

toConstr :: Const a b -> Constr

dataTypeOf :: Const a b -> DataType

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b))

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b))

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r

gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b)

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b)

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b)

Num a => Num (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b

(-) :: Const a b -> Const a b -> Const a b

(*) :: Const a b -> Const a b -> Const a b

negate :: Const a b -> Const a b

abs :: Const a b -> Const a b

signum :: Const a b -> Const a b

fromInteger :: Integer -> Const a b

Ord a => Ord (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering

(<) :: Const a b -> Const a b -> Bool

(<=) :: Const a b -> Const a b -> Bool

(>) :: Const a b -> Const a b -> Bool

(>=) :: Const a b -> Const a b -> Bool

max :: Const a b -> Const a b -> Const a b

min :: Const a b -> Const a b -> Const a b

Read a => Read (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

readsPrec :: Int -> ReadS (Const a b)

readList :: ReadS [Const a b]

readPrec :: ReadPrec (Const a b)

readListPrec :: ReadPrec [Const a b]

Real a => Real (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational

RealFloat a => RealFloat (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer

floatDigits :: Const a b -> Int

floatRange :: Const a b -> (Int, Int)

decodeFloat :: Const a b -> (Integer, Int)

encodeFloat :: Integer -> Int -> Const a b

exponent :: Const a b -> Int

significand :: Const a b -> Const a b

scaleFloat :: Int -> Const a b -> Const a b

isNaN :: Const a b -> Bool

isInfinite :: Const a b -> Bool

isDenormalized :: Const a b -> Bool

isNegativeZero :: Const a b -> Bool

isIEEE :: Const a b -> Bool

atan2 :: Const a b -> Const a b -> Const a b

RealFrac a => RealFrac (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b)

truncate :: Integral b0 => Const a b -> b0

round :: Integral b0 => Const a b -> b0

ceiling :: Integral b0 => Const a b -> b0

floor :: Integral b0 => Const a b -> b0

Show a => Show (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS

show :: Const a b -> String

showList :: [Const a b] -> ShowS

Ix a => Ix (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b]

index :: (Const a b, Const a b) -> Const a b -> Int

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int

inRange :: (Const a b, Const a b) -> Const a b -> Bool

rangeSize :: (Const a b, Const a b) -> Int

unsafeRangeSize :: (Const a b, Const a b) -> Int

IsString a => IsString (Const a b) 
Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b

Generic (Const a b) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b) :: Type -> Type

Methods

from :: Const a b -> Rep (Const a b) x

to :: Rep (Const a b) x -> Const a b

Semigroup a => Semigroup (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b

sconcat :: NonEmpty (Const a b) -> Const a b

stimes :: Integral b0 => b0 -> Const a b -> Const a b

Monoid a => Monoid (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b

mappend :: Const a b -> Const a b -> Const a b

mconcat :: [Const a b] -> Const a b

SingKind a => SingKind (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Demote (Const a b) = (r :: Type) Source #

Methods

fromSing :: forall (a0 :: Const a b). Sing a0 -> Demote (Const a b) Source #

toSing :: Demote (Const a b) -> SomeSing (Const a b) Source #

SDecide a => SDecide (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%~) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Decision (a0 :~: b0) Source #

Unbox a => Unbox (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Storable a => Storable (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int

alignment :: Const a b -> Int

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b)

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO ()

peekByteOff :: Ptr b0 -> Int -> IO (Const a b)

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO ()

peek :: Ptr (Const a b) -> IO (Const a b)

poke :: Ptr (Const a b) -> Const a b -> IO ()

Prim a => Prim (Const a b) 
Instance details

Defined in Data.Primitive.Types

Methods

sizeOf# :: Const a b -> Int#

alignment# :: Const a b -> Int#

indexByteArray# :: ByteArray# -> Int# -> Const a b

readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Const a b #)

writeByteArray# :: MutableByteArray# s -> Int# -> Const a b -> State# s -> State# s

setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Const a b -> State# s -> State# s

indexOffAddr# :: Addr# -> Int# -> Const a b

readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Const a b #)

writeOffAddr# :: Addr# -> Int# -> Const a b -> State# s -> State# s

setOffAddr# :: Addr# -> Int# -> Int# -> Const a b -> State# s -> State# s

Bits a => Bits (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b

(.|.) :: Const a b -> Const a b -> Const a b

xor :: Const a b -> Const a b -> Const a b

complement :: Const a b -> Const a b

shift :: Const a b -> Int -> Const a b

rotate :: Const a b -> Int -> Const a b

zeroBits :: Const a b

bit :: Int -> Const a b

setBit :: Const a b -> Int -> Const a b

clearBit :: Const a b -> Int -> Const a b

complementBit :: Const a b -> Int -> Const a b

testBit :: Const a b -> Int -> Bool

bitSizeMaybe :: Const a b -> Maybe Int

bitSize :: Const a b -> Int

isSigned :: Const a b -> Bool

shiftL :: Const a b -> Int -> Const a b

unsafeShiftL :: Const a b -> Int -> Const a b

shiftR :: Const a b -> Int -> Const a b

unsafeShiftR :: Const a b -> Int -> Const a b

rotateL :: Const a b -> Int -> Const a b

rotateR :: Const a b -> Int -> Const a b

popCount :: Const a b -> Int

FiniteBits a => FiniteBits (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

finiteBitSize :: Const a b -> Int

countLeadingZeros :: Const a b -> Int

countTrailingZeros :: Const a b -> Int

PEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%==) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sCompare :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t) Source #

(%<) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t) Source #

(%<=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t) Source #

(%>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t) Source #

(%>=) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t) Source #

sMax :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t) Source #

sMin :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t) Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Compare arg arg :: Ordering Source #

type arg < arg :: Bool Source #

type arg <= arg :: Bool Source #

type arg > arg :: Bool Source #

type arg >= arg :: Bool Source #

type Max arg arg :: a Source #

type Min arg arg :: a Source #

SNum a => SNum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%+) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t) Source #

(%-) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t) Source #

(%*) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t) Source #

sNegate :: forall (t :: Const a b). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Const a b). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Const a b). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Nat). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

PNum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type arg + arg :: a Source #

type arg - arg :: a Source #

type arg * arg :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

PBounded (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Nat). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t) Source #

sEnumFromThenTo :: forall (t :: Const a b) (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t) Source #

PEnum (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Nat Source #

type EnumFromTo arg arg :: [a] Source #

type EnumFromThenTo arg arg arg :: [a] Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%<>) :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type arg <> arg :: a Source #

type Sconcat arg :: a Source #

SShow a => SShow (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sShowsPrec :: forall (t :: Nat) (t :: Const a b) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t) Source #

sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t :: [Const a b]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t) Source #

PShow (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type ShowsPrec arg arg arg :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg :: Symbol Source #

SMonoid a => SMonoid (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t :: Const a b) (t :: Const a b). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t) Source #

sMconcat :: forall (t :: [Const a b]). Sing t -> Sing (Apply MconcatSym0 t) Source #

PMonoid (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Mempty :: a Source #

type Mappend arg arg :: a Source #

type Mconcat arg :: a Source #

SIsString a => SIsString (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.IsString

Methods

sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source #

PIsString (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.IsString

Associated Types

type FromString arg :: a Source #

SDecide a => TestCoercion (SConst :: Const a b -> Type) 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0)

SDecide a => TestEquality (SConst :: Const a b -> Type) 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0)

SingI a2 => SingI ('Const a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sing :: Sing ('Const a2) Source #

type Traverse (a1 :: a6989586621680794821 ~> f6989586621680794820 b6989586621680794822) (a2 :: Const m a6989586621680794821) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Traverse (a1 :: a6989586621680794821 ~> f6989586621680794820 b6989586621680794822) (a2 :: Const m a6989586621680794821)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Const m a0)
type LiftA2 (a1 :: a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) (a2 :: Const m a6989586621679566954) (a3 :: Const m b6989586621679566955) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type LiftA2 (a1 :: a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) (a2 :: Const m a6989586621679566954) (a3 :: Const m b6989586621679566955)
type Fmap (a1 :: a6989586621679566946 ~> b6989586621679566947) (a2 :: Const m a6989586621679566946) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Fmap (a1 :: a6989586621679566946 ~> b6989586621679566947) (a2 :: Const m a6989586621679566946)
type FoldMap (a1 :: a6989586621680486631 ~> k2) (a2 :: Const m a6989586621680486631) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type FoldMap (a1 :: a6989586621680486631 ~> k2) (a2 :: Const m a6989586621680486631)
type Foldr (a1 :: a6989586621680486632 ~> (k2 ~> k2)) (a2 :: k2) (a3 :: Const m a6989586621680486632) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldr (a1 :: a6989586621680486632 ~> (k2 ~> k2)) (a2 :: k2) (a3 :: Const m a6989586621680486632)
type Foldr' (arg1 :: a0 ~> (b0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldr' (arg1 :: a0 ~> (b0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0)
type Foldl (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldl (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0)
type Foldl' (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldl' (arg1 :: b0 ~> (a0 ~> b0)) (arg2 :: b0) (arg3 :: Const m a0)
type Rep1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Pure (a :: k1) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Pure (a :: k1)
type Foldr1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldr1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0)
type Foldl1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Foldl1 (arg1 :: a0 ~> (a0 ~> a0)) (arg2 :: Const m a0)
type Elem (arg1 :: a0) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Elem (arg1 :: a0) (arg2 :: Const m a0)
type (a1 :: k1) <$ (a2 :: Const m b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a1 :: k1) <$ (a2 :: Const m b6989586621679566949)
newtype MVector s (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Const a b) = MV_Const (MVector s a)
type Apply (ConstSym0 :: TyFun a (Const a b6989586621679090106) -> Type) (t6989586621680754547 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679090106) -> Type) (t6989586621680754547 :: a) = 'Const t6989586621680754547 :: Const a b6989586621679090106
type Fold (arg0 :: Const m m0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Fold (arg0 :: Const m m0)
type ToList (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ToList (arg0 :: Const m a0)
type Null (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Null (arg0 :: Const m a0)
type Length (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Length (arg0 :: Const m a0)
type Maximum (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Maximum (arg0 :: Const m a0)
type Minimum (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Minimum (arg0 :: Const m a0)
type Sum (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sum (arg0 :: Const m a0)
type Product (arg0 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Product (arg0 :: Const m a0)
type SequenceA (arg0 :: Const m (f0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type SequenceA (arg0 :: Const m (f0 a0))
type Sequence (arg0 :: Const m (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Const m (m0 a0))
type (a1 :: Const m (a6989586621679566952 ~> b6989586621679566953)) <*> (a2 :: Const m a6989586621679566952) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a1 :: Const m (a6989586621679566952 ~> b6989586621679566953)) <*> (a2 :: Const m a6989586621679566952)
type (arg1 :: Const m a0) *> (arg2 :: Const m b0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const m a0) *> (arg2 :: Const m b0)
type (arg1 :: Const m a0) <* (arg2 :: Const m b0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const m a0) <* (arg2 :: Const m b0)
type Rep (Const a b) 
Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Demote (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Demote (Const a b) = Const (Demote a) b
type Sing Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sing = SConst :: Const a b -> Type
newtype Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Const a b) = V_Const (Vector a)
type MinBound Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type MaxBound Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mempty Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mempty
type Negate (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Negate (a2 :: Const a1 b)
type Abs (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Abs (a2 :: Const a1 b)
type Signum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Signum (a2 :: Const a1 b)
type FromInteger a2 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type FromInteger a2
type Succ (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Succ (a2 :: Const a1 b)
type Pred (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Pred (a2 :: Const a1 b)
type ToEnum a2 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ToEnum a2
type FromEnum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type FromEnum (a2 :: Const a1 b)
type Sconcat (arg0 :: NonEmpty (Const a b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Sconcat (arg0 :: NonEmpty (Const a b))
type Show_ (arg0 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Show_ (arg0 :: Const a b)
type Mconcat (arg0 :: [Const a b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mconcat (arg0 :: [Const a b])
type FromString a2 Source # 
Instance details

Defined in Data.Singletons.Prelude.IsString

type FromString a2
type (a2 :: Const a1 b1) == (b2 :: Const a1 b1) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b1) == (b2 :: Const a1 b1)
type (x :: Const a b) /= (y :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (x :: Const a b) /= (y :: Const a b) = Not (x == y)
type Compare (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Compare (a2 :: Const a1 b) (a3 :: Const a1 b)
type (arg1 :: Const a b) < (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) < (arg2 :: Const a b)
type (arg1 :: Const a b) <= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) <= (arg2 :: Const a b)
type (arg1 :: Const a b) > (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) > (arg2 :: Const a b)
type (arg1 :: Const a b) >= (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (arg1 :: Const a b) >= (arg2 :: Const a b)
type Max (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Max (arg1 :: Const a b) (arg2 :: Const a b)
type Min (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Min (arg1 :: Const a b) (arg2 :: Const a b)
type (a2 :: Const a1 b) + (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) + (a3 :: Const a1 b)
type (a2 :: Const a1 b) - (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) - (a3 :: Const a1 b)
type (a2 :: Const a1 b) * (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) * (a3 :: Const a1 b)
type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b)
type (a2 :: Const a1 b) <> (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a2 :: Const a1 b) <> (a3 :: Const a1 b)
type ShowList (arg1 :: [Const a b]) arg2 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ShowList (arg1 :: [Const a b]) arg2
type Mappend (arg1 :: Const a b) (arg2 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Mappend (arg1 :: Const a b) (arg2 :: Const a b)
type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b)
type ShowsPrec a2 (a3 :: Const a1 b) a4 Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type ShowsPrec a2 (a3 :: Const a1 b) a4
type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680754817 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680754817 :: Const a b) = GetConst x6989586621680754817

type family GetConst (x :: Const a b) :: a where ... Source #

Equations

GetConst ('Const x) = x 

type family (a :: (~>) a b) <$> (a :: f a) :: f b where ... infixl 4 Source #

Equations

a_6989586621679737199 <$> a_6989586621679737201 = Apply (Apply FmapSym0 a_6989586621679737199) a_6989586621679737201 

(%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b) infixl 4 Source #

type family (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #

Instances

Instances details
type (a1 :: k1) <$ (a2 :: Maybe b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a1 :: k1) <$ (a2 :: Maybe b6989586621679566949)
type (a1 :: k1) <$ (a2 :: NonEmpty b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a1 :: k1) <$ (a2 :: NonEmpty b6989586621679566949)
type (a1 :: k1) <$ (a2 :: [b6989586621679566949]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a1 :: k1) <$ (a2 :: [b6989586621679566949])
type (a1 :: k1) <$ (a2 :: Down b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type (a1 :: k1) <$ (a2 :: Down b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Dual b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type (a1 :: k1) <$ (a2 :: Dual b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Sum b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type (a1 :: k1) <$ (a2 :: Sum b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Product b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

type (a1 :: k1) <$ (a2 :: Product b6989586621679566949)
type (a1 :: k1) <$ (a2 :: First b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type (a1 :: k1) <$ (a2 :: First b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Last b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

type (a1 :: k1) <$ (a2 :: Last b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Identity b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

type (a1 :: k1) <$ (a2 :: Identity b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Min b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Min b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Max b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Max b6989586621679566949)
type (a1 :: k1) <$ (a2 :: First b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: First b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Last b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Last b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Option b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a1 :: k1) <$ (a2 :: Option b6989586621679566949)
type (a2 :: k1) <$ (a3 :: Either a1 b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type (a2 :: k1) <$ (a3 :: Either a1 b6989586621679566949)
type (a2 :: k1) <$ (a3 :: (a1, b6989586621679566949)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type (a2 :: k1) <$ (a3 :: (a1, b6989586621679566949))
type (a2 :: k1) <$ (a3 :: Arg a1 b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type (a2 :: k1) <$ (a3 :: Arg a1 b6989586621679566949)
type (a1 :: k1) <$ (a2 :: Const m b6989586621679566949) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type (a1 :: k1) <$ (a2 :: Const m b6989586621679566949)

(%<$) :: forall a b (t :: a) (t :: f b). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #

type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ... infixl 4 Source #

Equations

a_6989586621679567317 <**> a_6989586621679567319 = Apply (Apply (Apply LiftA2Sym0 (Apply (Apply Lambda_6989586621679567327Sym0 a_6989586621679567317) a_6989586621679567319)) a_6989586621679567317) a_6989586621679567319 

(%<**>) :: forall f a b (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b) infixl 4 Source #

type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ... Source #

Equations

LiftA f a = Apply (Apply (<*>@#@$) (Apply PureSym0 f)) a 

sLiftA :: forall a b f (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b) Source #

type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ... Source #

Equations

LiftA3 f a b c = Apply (Apply (<*>@#@$) (Apply (Apply (Apply LiftA2Sym0 f) a) b)) c 

sLiftA3 :: forall a b c d f (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d) Source #

type family Optional (a :: f a) :: f (Maybe a) where ... Source #

sOptional :: forall f a (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a)) Source #

Defunctionalization symbols

data PureSym0 :: forall a6989586621679566951 f6989586621679566950. (~>) a6989586621679566951 (f6989586621679566950 a6989586621679566951) Source #

Instances

Instances details
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (PureSym0 :: TyFun a6989586621679566951 (f6989586621679566950 a6989586621679566951) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (PureSym0 :: TyFun a (f6989586621679566950 a) -> Type) (arg6989586621679567361 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (PureSym0 :: TyFun a (f6989586621679566950 a) -> Type) (arg6989586621679567361 :: a) = Pure arg6989586621679567361 :: f6989586621679566950 a

type PureSym1 (arg6989586621679567361 :: a6989586621679566951) = Pure arg6989586621679567361 Source #

data (<*>@#@$) :: forall f6989586621679566950 a6989586621679566952 b6989586621679566953. (~>) (f6989586621679566950 ((~>) a6989586621679566952 b6989586621679566953)) ((~>) (f6989586621679566950 a6989586621679566952) (f6989586621679566950 b6989586621679566953)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f6989586621679566950 (a6989586621679566952 ~> b6989586621679566953)) (f6989586621679566950 a6989586621679566952 ~> f6989586621679566950 b6989586621679566953) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$) :: TyFun (f6989586621679566950 (a6989586621679566952 ~> b6989586621679566953)) (f6989586621679566950 a6989586621679566952 ~> f6989586621679566950 b6989586621679566953) -> Type) (arg6989586621679567363 :: f6989586621679566950 (a6989586621679566952 ~> b6989586621679566953)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$) :: TyFun (f6989586621679566950 (a6989586621679566952 ~> b6989586621679566953)) (f6989586621679566950 a6989586621679566952 ~> f6989586621679566950 b6989586621679566953) -> Type) (arg6989586621679567363 :: f6989586621679566950 (a6989586621679566952 ~> b6989586621679566953)) = (<*>@#@$$) arg6989586621679567363

data (<*>@#@$$) (arg6989586621679567363 :: f6989586621679566950 ((~>) a6989586621679566952 b6989586621679566953)) :: (~>) (f6989586621679566950 a6989586621679566952) (f6989586621679566950 b6989586621679566953) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((<*>@#@$$) d) Source #

SuppressUnusedWarnings ((<*>@#@$$) arg6989586621679567363 :: TyFun (f6989586621679566950 a6989586621679566952) (f6989586621679566950 b6989586621679566953) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$$) arg6989586621679567363 :: TyFun (f a) (f b) -> Type) (arg6989586621679567364 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*>@#@$$) arg6989586621679567363 :: TyFun (f a) (f b) -> Type) (arg6989586621679567364 :: f a) = arg6989586621679567363 <*> arg6989586621679567364

type (<*>@#@$$$) (arg6989586621679567363 :: f6989586621679566950 ((~>) a6989586621679566952 b6989586621679566953)) (arg6989586621679567364 :: f6989586621679566950 a6989586621679566952) = (<*>) arg6989586621679567363 arg6989586621679567364 Source #

data (*>@#@$) :: forall f6989586621679566950 a6989586621679566957 b6989586621679566958. (~>) (f6989586621679566950 a6989586621679566957) ((~>) (f6989586621679566950 b6989586621679566958) (f6989586621679566950 b6989586621679566958)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((*>@#@$) :: TyFun (f6989586621679566950 a6989586621679566957) (f6989586621679566950 b6989586621679566958 ~> f6989586621679566950 b6989586621679566958) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((*>@#@$) :: TyFun (f6989586621679566950 a6989586621679566957) (f6989586621679566950 b6989586621679566958 ~> f6989586621679566950 b6989586621679566958) -> Type) (arg6989586621679567373 :: f6989586621679566950 a6989586621679566957) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((*>@#@$) :: TyFun (f6989586621679566950 a6989586621679566957) (f6989586621679566950 b6989586621679566958 ~> f6989586621679566950 b6989586621679566958) -> Type) (arg6989586621679567373 :: f6989586621679566950 a6989586621679566957) = arg6989586621679567373 *>@#@$$ b6989586621679566958 :: TyFun (f6989586621679566950 b6989586621679566958) (f6989586621679566950 b6989586621679566958) -> Type

data (*>@#@$$) (arg6989586621679567373 :: f6989586621679566950 a6989586621679566957) :: forall b6989586621679566958. (~>) (f6989586621679566950 b6989586621679566958) (f6989586621679566950 b6989586621679566958) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (d *>@#@$$ b :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d *>@#@$$ b) Source #

SuppressUnusedWarnings (arg6989586621679567373 *>@#@$$ b6989586621679566958 :: TyFun (f6989586621679566950 b6989586621679566958) (f6989586621679566950 b6989586621679566958) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567373 *>@#@$$ b :: TyFun (f b) (f b) -> Type) (arg6989586621679567374 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567373 *>@#@$$ b :: TyFun (f b) (f b) -> Type) (arg6989586621679567374 :: f b) = arg6989586621679567373 *> arg6989586621679567374

type (*>@#@$$$) (arg6989586621679567373 :: f6989586621679566950 a6989586621679566957) (arg6989586621679567374 :: f6989586621679566950 b6989586621679566958) = (*>) arg6989586621679567373 arg6989586621679567374 Source #

data (<*@#@$) :: forall f6989586621679566950 a6989586621679566959 b6989586621679566960. (~>) (f6989586621679566950 a6989586621679566959) ((~>) (f6989586621679566950 b6989586621679566960) (f6989586621679566950 a6989586621679566959)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<*@#@$) :: TyFun (f6989586621679566950 a6989586621679566959) (f6989586621679566950 b6989586621679566960 ~> f6989586621679566950 a6989586621679566959) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*@#@$) :: TyFun (f6989586621679566950 a6989586621679566959) (f6989586621679566950 b6989586621679566960 ~> f6989586621679566950 a6989586621679566959) -> Type) (arg6989586621679567377 :: f6989586621679566950 a6989586621679566959) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<*@#@$) :: TyFun (f6989586621679566950 a6989586621679566959) (f6989586621679566950 b6989586621679566960 ~> f6989586621679566950 a6989586621679566959) -> Type) (arg6989586621679567377 :: f6989586621679566950 a6989586621679566959) = arg6989586621679567377 <*@#@$$ b6989586621679566960 :: TyFun (f6989586621679566950 b6989586621679566960) (f6989586621679566950 a6989586621679566959) -> Type

data (<*@#@$$) (arg6989586621679567377 :: f6989586621679566950 a6989586621679566959) :: forall b6989586621679566960. (~>) (f6989586621679566950 b6989586621679566960) (f6989586621679566950 a6989586621679566959) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (d <*@#@$$ b :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d <*@#@$$ b) Source #

SuppressUnusedWarnings (arg6989586621679567377 <*@#@$$ b6989586621679566960 :: TyFun (f6989586621679566950 b6989586621679566960) (f6989586621679566950 a6989586621679566959) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567377 <*@#@$$ b :: TyFun (f b) (f a) -> Type) (arg6989586621679567378 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567377 <*@#@$$ b :: TyFun (f b) (f a) -> Type) (arg6989586621679567378 :: f b) = arg6989586621679567377 <* arg6989586621679567378

type (<*@#@$$$) (arg6989586621679567377 :: f6989586621679566950 a6989586621679566959) (arg6989586621679567378 :: f6989586621679566950 b6989586621679566960) = (<*) arg6989586621679567377 arg6989586621679567378 Source #

data (<|>@#@$) :: forall f6989586621679567025 a6989586621679567027. (~>) (f6989586621679567025 a6989586621679567027) ((~>) (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027)) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<|>@#@$) :: TyFun (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027 ~> f6989586621679567025 a6989586621679567027) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$) :: TyFun (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027 ~> f6989586621679567025 a6989586621679567027) -> Type) (arg6989586621679567485 :: f6989586621679567025 a6989586621679567027) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$) :: TyFun (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027 ~> f6989586621679567025 a6989586621679567027) -> Type) (arg6989586621679567485 :: f6989586621679567025 a6989586621679567027) = (<|>@#@$$) arg6989586621679567485

data (<|>@#@$$) (arg6989586621679567485 :: f6989586621679567025 a6989586621679567027) :: (~>) (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027) infixl 3 Source #

Instances

Instances details
(SAlternative f, SingI d) => SingI ((<|>@#@$$) d :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((<|>@#@$$) d) Source #

SuppressUnusedWarnings ((<|>@#@$$) arg6989586621679567485 :: TyFun (f6989586621679567025 a6989586621679567027) (f6989586621679567025 a6989586621679567027) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$$) arg6989586621679567485 :: TyFun (f a) (f a) -> Type) (arg6989586621679567486 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<|>@#@$$) arg6989586621679567485 :: TyFun (f a) (f a) -> Type) (arg6989586621679567486 :: f a) = arg6989586621679567485 <|> arg6989586621679567486

type (<|>@#@$$$) (arg6989586621679567485 :: f6989586621679567025 a6989586621679567027) (arg6989586621679567486 :: f6989586621679567025 a6989586621679567027) = (<|>) arg6989586621679567485 arg6989586621679567486 Source #

data ConstSym0 :: forall (a6989586621679090105 :: Type) k6989586621679090104 (b6989586621679090106 :: k6989586621679090104). (~>) a6989586621679090105 (Const (a6989586621679090105 :: Type) (b6989586621679090106 :: k6989586621679090104)) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a6989586621679090105 (Const a6989586621679090105 b6989586621679090106) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679090105 (Const a6989586621679090105 b6989586621679090106) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679090106) -> Type) (t6989586621680754547 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (ConstSym0 :: TyFun a (Const a b6989586621679090106) -> Type) (t6989586621680754547 :: a) = 'Const t6989586621680754547 :: Const a b6989586621679090106

type ConstSym1 (t6989586621680754547 :: a6989586621679090105) = 'Const t6989586621680754547 Source #

data GetConstSym0 :: forall a6989586621680754815 b6989586621680754816. (~>) (Const a6989586621680754815 b6989586621680754816) a6989586621680754815 Source #

Instances

Instances details
SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a6989586621680754815 b6989586621680754816) a6989586621680754815 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680754817 :: Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (x6989586621680754817 :: Const a b) = GetConst x6989586621680754817

type GetConstSym1 (x6989586621680754817 :: Const a6989586621680754815 b6989586621680754816) = GetConst x6989586621680754817 Source #

data (<$>@#@$) :: forall a6989586621679737122 b6989586621679737123 f6989586621679737121. (~>) ((~>) a6989586621679737122 b6989586621679737123) ((~>) (f6989586621679737121 a6989586621679737122) (f6989586621679737121 b6989586621679737123)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a6989586621679737122 ~> b6989586621679737123) (f6989586621679737121 a6989586621679737122 ~> f6989586621679737121 b6989586621679737123) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply ((<$>@#@$) :: TyFun (a6989586621679737122 ~> b6989586621679737123) (f6989586621679737121 a6989586621679737122 ~> f6989586621679737121 b6989586621679737123) -> Type) (a6989586621679737203 :: a6989586621679737122 ~> b6989586621679737123) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply ((<$>@#@$) :: TyFun (a6989586621679737122 ~> b6989586621679737123) (f6989586621679737121 a6989586621679737122 ~> f6989586621679737121 b6989586621679737123) -> Type) (a6989586621679737203 :: a6989586621679737122 ~> b6989586621679737123) = a6989586621679737203 <$>@#@$$ f6989586621679737121 :: TyFun (f6989586621679737121 a6989586621679737122) (f6989586621679737121 b6989586621679737123) -> Type

data (<$>@#@$$) (a6989586621679737203 :: (~>) a6989586621679737122 b6989586621679737123) :: forall f6989586621679737121. (~>) (f6989586621679737121 a6989586621679737122) (f6989586621679737121 b6989586621679737123) infixl 4 Source #

Instances

Instances details
(SFunctor f, SingI d) => SingI (d <$>@#@$$ f :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

Methods

sing :: Sing (d <$>@#@$$ f) Source #

SuppressUnusedWarnings (a6989586621679737203 <$>@#@$$ f6989586621679737121 :: TyFun (f6989586621679737121 a6989586621679737122) (f6989586621679737121 b6989586621679737123) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply (a6989586621679737203 <$>@#@$$ f :: TyFun (f a) (f b) -> Type) (a6989586621679737204 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply (a6989586621679737203 <$>@#@$$ f :: TyFun (f a) (f b) -> Type) (a6989586621679737204 :: f a) = a6989586621679737203 <$> a6989586621679737204

type (<$>@#@$$$) (a6989586621679737203 :: (~>) a6989586621679737122 b6989586621679737123) (a6989586621679737204 :: f6989586621679737121 a6989586621679737122) = (<$>) a6989586621679737203 a6989586621679737204 Source #

data (<$@#@$) :: forall a6989586621679566948 f6989586621679566945 b6989586621679566949. (~>) a6989586621679566948 ((~>) (f6989586621679566945 b6989586621679566949) (f6989586621679566945 a6989586621679566948)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<$@#@$) :: TyFun a6989586621679566948 (f6989586621679566945 b6989586621679566949 ~> f6989586621679566945 a6989586621679566948) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<$@#@$) :: TyFun a6989586621679566948 (f6989586621679566945 b6989586621679566949 ~> f6989586621679566945 a6989586621679566948) -> Type) (arg6989586621679567341 :: a6989586621679566948) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<$@#@$) :: TyFun a6989586621679566948 (f6989586621679566945 b6989586621679566949 ~> f6989586621679566945 a6989586621679566948) -> Type) (arg6989586621679567341 :: a6989586621679566948) = (arg6989586621679567341 <$@#@$$ f6989586621679566945) b6989586621679566949 :: TyFun (f6989586621679566945 b6989586621679566949) (f6989586621679566945 a6989586621679566948) -> Type

data (<$@#@$$) (arg6989586621679567341 :: a6989586621679566948) :: forall f6989586621679566945 b6989586621679566949. (~>) (f6989586621679566945 b6989586621679566949) (f6989586621679566945 a6989586621679566948) infixl 4 Source #

Instances

Instances details
(SFunctor f, SingI d) => SingI ((d <$@#@$$ f) b :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((d <$@#@$$ f) b) Source #

SuppressUnusedWarnings ((arg6989586621679567341 <$@#@$$ f6989586621679566945) b6989586621679566949 :: TyFun (f6989586621679566945 b6989586621679566949) (f6989586621679566945 a6989586621679566948) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((arg6989586621679567341 <$@#@$$ f) b :: TyFun (f b) (f a) -> Type) (arg6989586621679567342 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((arg6989586621679567341 <$@#@$$ f) b :: TyFun (f b) (f a) -> Type) (arg6989586621679567342 :: f b) = arg6989586621679567341 <$ arg6989586621679567342

type (<$@#@$$$) (arg6989586621679567341 :: a6989586621679566948) (arg6989586621679567342 :: f6989586621679566945 b6989586621679566949) = (<$) arg6989586621679567341 arg6989586621679567342 Source #

data (<**>@#@$) :: forall f6989586621679566910 a6989586621679566911 b6989586621679566912. (~>) (f6989586621679566910 a6989586621679566911) ((~>) (f6989586621679566910 ((~>) a6989586621679566911 b6989586621679566912)) (f6989586621679566910 b6989586621679566912)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((<**>@#@$) :: TyFun (f6989586621679566910 a6989586621679566911) (f6989586621679566910 (a6989586621679566911 ~> b6989586621679566912) ~> f6989586621679566910 b6989586621679566912) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<**>@#@$) :: TyFun (f6989586621679566910 a6989586621679566911) (f6989586621679566910 (a6989586621679566911 ~> b6989586621679566912) ~> f6989586621679566910 b6989586621679566912) -> Type) (a6989586621679567321 :: f6989586621679566910 a6989586621679566911) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((<**>@#@$) :: TyFun (f6989586621679566910 a6989586621679566911) (f6989586621679566910 (a6989586621679566911 ~> b6989586621679566912) ~> f6989586621679566910 b6989586621679566912) -> Type) (a6989586621679567321 :: f6989586621679566910 a6989586621679566911) = a6989586621679567321 <**>@#@$$ b6989586621679566912 :: TyFun (f6989586621679566910 (a6989586621679566911 ~> b6989586621679566912)) (f6989586621679566910 b6989586621679566912) -> Type

data (<**>@#@$$) (a6989586621679567321 :: f6989586621679566910 a6989586621679566911) :: forall b6989586621679566912. (~>) (f6989586621679566910 ((~>) a6989586621679566911 b6989586621679566912)) (f6989586621679566910 b6989586621679566912) infixl 4 Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (d <**>@#@$$ b :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d <**>@#@$$ b) Source #

SuppressUnusedWarnings (a6989586621679567321 <**>@#@$$ b6989586621679566912 :: TyFun (f6989586621679566910 (a6989586621679566911 ~> b6989586621679566912)) (f6989586621679566910 b6989586621679566912) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (a6989586621679567321 <**>@#@$$ b :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679567322 :: f (a ~> b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (a6989586621679567321 <**>@#@$$ b :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679567322 :: f (a ~> b)) = a6989586621679567321 <**> a6989586621679567322

type (<**>@#@$$$) (a6989586621679567321 :: f6989586621679566910 a6989586621679566911) (a6989586621679567322 :: f6989586621679566910 ((~>) a6989586621679566911 b6989586621679566912)) = (<**>) a6989586621679567321 a6989586621679567322 Source #

data LiftASym0 :: forall a6989586621679566908 b6989586621679566909 f6989586621679566907. (~>) ((~>) a6989586621679566908 b6989586621679566909) ((~>) (f6989586621679566907 a6989586621679566908) (f6989586621679566907 b6989586621679566909)) Source #

Instances

Instances details
SApplicative f => SingI (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftASym0 :: TyFun (a6989586621679566908 ~> b6989586621679566909) (f6989586621679566907 a6989586621679566908 ~> f6989586621679566907 b6989586621679566909) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym0 :: TyFun (a6989586621679566908 ~> b6989586621679566909) (f6989586621679566907 a6989586621679566908 ~> f6989586621679566907 b6989586621679566909) -> Type) (a6989586621679567311 :: a6989586621679566908 ~> b6989586621679566909) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym0 :: TyFun (a6989586621679566908 ~> b6989586621679566909) (f6989586621679566907 a6989586621679566908 ~> f6989586621679566907 b6989586621679566909) -> Type) (a6989586621679567311 :: a6989586621679566908 ~> b6989586621679566909) = LiftASym1 a6989586621679567311 f6989586621679566907 :: TyFun (f6989586621679566907 a6989586621679566908) (f6989586621679566907 b6989586621679566909) -> Type

data LiftASym1 (a6989586621679567311 :: (~>) a6989586621679566908 b6989586621679566909) :: forall f6989586621679566907. (~>) (f6989586621679566907 a6989586621679566908) (f6989586621679566907 b6989586621679566909) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (LiftASym1 d f :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftASym1 d f) Source #

SuppressUnusedWarnings (LiftASym1 a6989586621679567311 f6989586621679566907 :: TyFun (f6989586621679566907 a6989586621679566908) (f6989586621679566907 b6989586621679566909) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym1 a6989586621679567311 f :: TyFun (f a) (f b) -> Type) (a6989586621679567312 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftASym1 a6989586621679567311 f :: TyFun (f a) (f b) -> Type) (a6989586621679567312 :: f a) = LiftA a6989586621679567311 a6989586621679567312

type LiftASym2 (a6989586621679567311 :: (~>) a6989586621679566908 b6989586621679566909) (a6989586621679567312 :: f6989586621679566907 a6989586621679566908) = LiftA a6989586621679567311 a6989586621679567312 Source #

data LiftA2Sym0 :: forall a6989586621679566954 b6989586621679566955 c6989586621679566956 f6989586621679566950. (~>) ((~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) ((~>) (f6989586621679566950 a6989586621679566954) ((~>) (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) (f6989586621679566950 a6989586621679566954 ~> (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym0 :: TyFun (a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) (f6989586621679566950 a6989586621679566954 ~> (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956)) -> Type) (arg6989586621679567367 :: a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym0 :: TyFun (a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) (f6989586621679566950 a6989586621679566954 ~> (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956)) -> Type) (arg6989586621679567367 :: a6989586621679566954 ~> (b6989586621679566955 ~> c6989586621679566956)) = LiftA2Sym1 arg6989586621679567367 f6989586621679566950 :: TyFun (f6989586621679566950 a6989586621679566954) (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956) -> Type

data LiftA2Sym1 (arg6989586621679567367 :: (~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) :: forall f6989586621679566950. (~>) (f6989586621679566950 a6989586621679566954) ((~>) (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956)) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (LiftA2Sym1 d f :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA2Sym1 d f) Source #

SuppressUnusedWarnings (LiftA2Sym1 arg6989586621679567367 f6989586621679566950 :: TyFun (f6989586621679566950 a6989586621679566954) (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym1 arg6989586621679567367 f6989586621679566950 :: TyFun (f6989586621679566950 a6989586621679566954) (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956) -> Type) (arg6989586621679567368 :: f6989586621679566950 a6989586621679566954) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym1 arg6989586621679567367 f6989586621679566950 :: TyFun (f6989586621679566950 a6989586621679566954) (f6989586621679566950 b6989586621679566955 ~> f6989586621679566950 c6989586621679566956) -> Type) (arg6989586621679567368 :: f6989586621679566950 a6989586621679566954) = LiftA2Sym2 arg6989586621679567367 arg6989586621679567368

data LiftA2Sym2 (arg6989586621679567367 :: (~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) (arg6989586621679567368 :: f6989586621679566950 a6989586621679566954) :: (~>) (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956) Source #

Instances

Instances details
(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA2Sym2 d1 d2) Source #

SuppressUnusedWarnings (LiftA2Sym2 arg6989586621679567368 arg6989586621679567367 :: TyFun (f6989586621679566950 b6989586621679566955) (f6989586621679566950 c6989586621679566956) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym2 arg6989586621679567368 arg6989586621679567367 :: TyFun (f b) (f c) -> Type) (arg6989586621679567369 :: f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA2Sym2 arg6989586621679567368 arg6989586621679567367 :: TyFun (f b) (f c) -> Type) (arg6989586621679567369 :: f b) = LiftA2 arg6989586621679567368 arg6989586621679567367 arg6989586621679567369

type LiftA2Sym3 (arg6989586621679567367 :: (~>) a6989586621679566954 ((~>) b6989586621679566955 c6989586621679566956)) (arg6989586621679567368 :: f6989586621679566950 a6989586621679566954) (arg6989586621679567369 :: f6989586621679566950 b6989586621679566955) = LiftA2 arg6989586621679567367 arg6989586621679567368 arg6989586621679567369 Source #

data LiftA3Sym0 :: forall a6989586621679566903 b6989586621679566904 c6989586621679566905 d6989586621679566906 f6989586621679566902. (~>) ((~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) ((~>) (f6989586621679566902 a6989586621679566903) ((~>) (f6989586621679566902 b6989586621679566904) ((~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906)))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftA3Sym0 :: TyFun (a6989586621679566903 ~> (b6989586621679566904 ~> (c6989586621679566905 ~> d6989586621679566906))) (f6989586621679566902 a6989586621679566903 ~> (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym0 :: TyFun (a6989586621679566903 ~> (b6989586621679566904 ~> (c6989586621679566905 ~> d6989586621679566906))) (f6989586621679566902 a6989586621679566903 ~> (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906))) -> Type) (a6989586621679567299 :: a6989586621679566903 ~> (b6989586621679566904 ~> (c6989586621679566905 ~> d6989586621679566906))) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym0 :: TyFun (a6989586621679566903 ~> (b6989586621679566904 ~> (c6989586621679566905 ~> d6989586621679566906))) (f6989586621679566902 a6989586621679566903 ~> (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906))) -> Type) (a6989586621679567299 :: a6989586621679566903 ~> (b6989586621679566904 ~> (c6989586621679566905 ~> d6989586621679566906))) = LiftA3Sym1 a6989586621679567299 f6989586621679566902 :: TyFun (f6989586621679566902 a6989586621679566903) (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906)) -> Type

data LiftA3Sym1 (a6989586621679567299 :: (~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) :: forall f6989586621679566902. (~>) (f6989586621679566902 a6989586621679566903) ((~>) (f6989586621679566902 b6989586621679566904) ((~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906))) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI (LiftA3Sym1 d2 f :: TyFun (f a) (f b ~> (f c ~> f d1)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA3Sym1 d2 f) Source #

SuppressUnusedWarnings (LiftA3Sym1 a6989586621679567299 f6989586621679566902 :: TyFun (f6989586621679566902 a6989586621679566903) (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym1 a6989586621679567299 f6989586621679566902 :: TyFun (f6989586621679566902 a6989586621679566903) (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906)) -> Type) (a6989586621679567300 :: f6989586621679566902 a6989586621679566903) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym1 a6989586621679567299 f6989586621679566902 :: TyFun (f6989586621679566902 a6989586621679566903) (f6989586621679566902 b6989586621679566904 ~> (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906)) -> Type) (a6989586621679567300 :: f6989586621679566902 a6989586621679566903) = LiftA3Sym2 a6989586621679567299 a6989586621679567300

data LiftA3Sym2 (a6989586621679567299 :: (~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) (a6989586621679567300 :: f6989586621679566902 a6989586621679566903) :: (~>) (f6989586621679566902 b6989586621679566904) ((~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906)) Source #

Instances

Instances details
(SApplicative f, SingI d2, SingI d3) => SingI (LiftA3Sym2 d2 d3 :: TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA3Sym2 d2 d3) Source #

SuppressUnusedWarnings (LiftA3Sym2 a6989586621679567300 a6989586621679567299 :: TyFun (f6989586621679566902 b6989586621679566904) (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym2 a6989586621679567300 a6989586621679567299 :: TyFun (f6989586621679566902 b6989586621679566904) (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906) -> Type) (a6989586621679567301 :: f6989586621679566902 b6989586621679566904) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym2 a6989586621679567300 a6989586621679567299 :: TyFun (f6989586621679566902 b6989586621679566904) (f6989586621679566902 c6989586621679566905 ~> f6989586621679566902 d6989586621679566906) -> Type) (a6989586621679567301 :: f6989586621679566902 b6989586621679566904) = LiftA3Sym3 a6989586621679567300 a6989586621679567299 a6989586621679567301

data LiftA3Sym3 (a6989586621679567299 :: (~>) a6989586621679566903 ((~>) b6989586621679566904 ((~>) c6989586621679566905 d6989586621679566906))) (a6989586621679567300 :: f6989586621679566902 a6989586621679566903) (a6989586621679567301 :: f6989586621679566902 b6989586621679566904) :: (~>) (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906) Source #

Instances

Instances details
(SApplicative f, SingI d2, SingI d3, SingI d4) => SingI (LiftA3Sym3 d2 d3 d4 :: TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftA3Sym3 d2 d3 d4) Source #

SuppressUnusedWarnings (LiftA3Sym3 a6989586621679567301 a6989586621679567300 a6989586621679567299 :: TyFun (f6989586621679566902 c6989586621679566905) (f6989586621679566902 d6989586621679566906) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym3 a6989586621679567301 a6989586621679567300 a6989586621679567299 :: TyFun (f c) (f d) -> Type) (a6989586621679567302 :: f c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftA3Sym3 a6989586621679567301 a6989586621679567300 a6989586621679567299 :: TyFun (f c) (f d) -> Type) (a6989586621679567302 :: f c) = LiftA3 a6989586621679567301 a6989586621679567300 a6989586621679567299 a6989586621679567302

data OptionalSym0 :: forall f6989586621681262005 a6989586621681262006. (~>) (f6989586621681262005 a6989586621681262006) (f6989586621681262005 (Maybe a6989586621681262006)) Source #

Instances

Instances details
SAlternative f => SingI (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

SuppressUnusedWarnings (OptionalSym0 :: TyFun (f6989586621681262005 a6989586621681262006) (f6989586621681262005 (Maybe a6989586621681262006)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621681262043 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Applicative

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621681262043 :: f a) = Optional a6989586621681262043

type OptionalSym1 (a6989586621681262043 :: f6989586621681262005 a6989586621681262006) = Optional a6989586621681262043 Source #

Orphan instances

SApplicative Down Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t :: Down (a ~> b)) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a b c (t :: a ~> (b ~> c)) (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

PApplicative Down Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t :: (a, a0 ~> b)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t) Source #

sLiftA2 :: forall a0 b c (t :: a0 ~> (b ~> c)) (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t) Source #

(%*>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t) Source #

(%<*) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t) Source #

PApplicative ((,) a) Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg :: f b Source #

type LiftA2 arg arg arg :: f c Source #

type arg *> arg :: f b Source #

type arg <* arg :: f a Source #