singletons-2.6: A framework for generating singleton types
Copyright(C) 2016 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Function

Description

Defines singleton versions of the definitions in Data.Function.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Function. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis
  • type family Id (a :: a) :: a where ...
  • sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a)
  • type family Const (a :: a) (a :: b) :: a where ...
  • sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a)
  • type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
  • (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
  • type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ...
  • sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c)
  • type family (a :: (~>) a b) $ (a :: a) :: b where ...
  • (%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b)
  • type family (a :: a) & (a :: (~>) a b) :: b where ...
  • (%&) :: forall a b (t :: a) (t :: (~>) a b). Sing t -> Sing t -> Sing (Apply (Apply (&@#@$) t) t :: b)
  • type family On (a :: (~>) b ((~>) b c)) (a :: (~>) a b) (a :: a) (a :: a) :: c where ...
  • sOn :: forall b c a (t :: (~>) b ((~>) b c)) (t :: (~>) a b) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply OnSym0 t) t) t) t :: c)
  • data IdSym0 :: forall a6989586621679541558. (~>) a6989586621679541558 a6989586621679541558
  • type IdSym1 (a6989586621679541753 :: a6989586621679541558) = Id a6989586621679541753
  • data ConstSym0 :: forall a6989586621679541556 b6989586621679541557. (~>) a6989586621679541556 ((~>) b6989586621679541557 a6989586621679541556)
  • data ConstSym1 (a6989586621679541748 :: a6989586621679541556) :: forall b6989586621679541557. (~>) b6989586621679541557 a6989586621679541556
  • type ConstSym2 (a6989586621679541748 :: a6989586621679541556) (a6989586621679541749 :: b6989586621679541557) = Const a6989586621679541748 a6989586621679541749
  • data (.@#@$) :: forall b6989586621679541553 c6989586621679541554 a6989586621679541555. (~>) ((~>) b6989586621679541553 c6989586621679541554) ((~>) ((~>) a6989586621679541555 b6989586621679541553) ((~>) a6989586621679541555 c6989586621679541554))
  • data (.@#@$$) (a6989586621679541729 :: (~>) b6989586621679541553 c6989586621679541554) :: forall a6989586621679541555. (~>) ((~>) a6989586621679541555 b6989586621679541553) ((~>) a6989586621679541555 c6989586621679541554)
  • data (a6989586621679541729 :: (~>) b6989586621679541553 c6989586621679541554) .@#@$$$ (a6989586621679541730 :: (~>) a6989586621679541555 b6989586621679541553) :: (~>) a6989586621679541555 c6989586621679541554
  • type (.@#@$$$$) (a6989586621679541729 :: (~>) b6989586621679541553 c6989586621679541554) (a6989586621679541730 :: (~>) a6989586621679541555 b6989586621679541553) (a6989586621679541731 :: a6989586621679541555) = (.) a6989586621679541729 a6989586621679541730 a6989586621679541731
  • data FlipSym0 :: forall a6989586621679541550 b6989586621679541551 c6989586621679541552. (~>) ((~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) ((~>) b6989586621679541551 ((~>) a6989586621679541550 c6989586621679541552))
  • data FlipSym1 (a6989586621679541720 :: (~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) :: (~>) b6989586621679541551 ((~>) a6989586621679541550 c6989586621679541552)
  • data FlipSym2 (a6989586621679541720 :: (~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) (a6989586621679541721 :: b6989586621679541551) :: (~>) a6989586621679541550 c6989586621679541552
  • type FlipSym3 (a6989586621679541720 :: (~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) (a6989586621679541721 :: b6989586621679541551) (a6989586621679541722 :: a6989586621679541550) = Flip a6989586621679541720 a6989586621679541721 a6989586621679541722
  • data ($@#@$) :: forall a6989586621679541547 b6989586621679541548. (~>) ((~>) a6989586621679541547 b6989586621679541548) ((~>) a6989586621679541547 b6989586621679541548)
  • data ($@#@$$) (a6989586621679541704 :: (~>) a6989586621679541547 b6989586621679541548) :: (~>) a6989586621679541547 b6989586621679541548
  • type ($@#@$$$) (a6989586621679541704 :: (~>) a6989586621679541547 b6989586621679541548) (a6989586621679541705 :: a6989586621679541547) = ($) a6989586621679541704 a6989586621679541705
  • data (&@#@$) :: forall a6989586621679752681 b6989586621679752682. (~>) a6989586621679752681 ((~>) ((~>) a6989586621679752681 b6989586621679752682) b6989586621679752682)
  • data (&@#@$$) (a6989586621679752694 :: a6989586621679752681) :: forall b6989586621679752682. (~>) ((~>) a6989586621679752681 b6989586621679752682) b6989586621679752682
  • type (&@#@$$$) (a6989586621679752694 :: a6989586621679752681) (a6989586621679752695 :: (~>) a6989586621679752681 b6989586621679752682) = (&) a6989586621679752694 a6989586621679752695
  • data OnSym0 :: forall b6989586621679752683 c6989586621679752684 a6989586621679752685. (~>) ((~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) ((~>) ((~>) a6989586621679752685 b6989586621679752683) ((~>) a6989586621679752685 ((~>) a6989586621679752685 c6989586621679752684)))
  • data OnSym1 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) :: forall a6989586621679752685. (~>) ((~>) a6989586621679752685 b6989586621679752683) ((~>) a6989586621679752685 ((~>) a6989586621679752685 c6989586621679752684))
  • data OnSym2 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) (a6989586621679752701 :: (~>) a6989586621679752685 b6989586621679752683) :: (~>) a6989586621679752685 ((~>) a6989586621679752685 c6989586621679752684)
  • data OnSym3 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) (a6989586621679752701 :: (~>) a6989586621679752685 b6989586621679752683) (a6989586621679752702 :: a6989586621679752685) :: (~>) a6989586621679752685 c6989586621679752684
  • type OnSym4 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) (a6989586621679752701 :: (~>) a6989586621679752685 b6989586621679752683) (a6989586621679752702 :: a6989586621679752685) (a6989586621679752703 :: a6989586621679752685) = On a6989586621679752700 a6989586621679752701 a6989586621679752702 a6989586621679752703

Prelude re-exports

type family Id (a :: a) :: a where ... Source #

Equations

Id x = x 

sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a) Source #

type family Const (a :: a) (a :: b) :: a where ... Source #

Equations

Const x _ = x 

sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a) Source #

type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #

Equations

(f . g) a_6989586621679541735 = Apply (Apply (Apply (Apply Lambda_6989586621679541740Sym0 f) g) a_6989586621679541735) a_6989586621679541735 

(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #

type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ... Source #

Equations

Flip f x y = Apply (Apply f y) x 

sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c) Source #

type family (a :: (~>) a b) $ (a :: a) :: b where ... infixr 0 Source #

Equations

f $ x = Apply f x 

(%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b) infixr 0 Source #

Other combinators

type family (a :: a) & (a :: (~>) a b) :: b where ... infixl 1 Source #

Equations

x & f = Apply f x 

(%&) :: forall a b (t :: a) (t :: (~>) a b). Sing t -> Sing t -> Sing (Apply (Apply (&@#@$) t) t :: b) infixl 1 Source #

type family On (a :: (~>) b ((~>) b c)) (a :: (~>) a b) (a :: a) (a :: a) :: c where ... infixl 0 Source #

Equations

On ty f a_6989586621679752708 a_6989586621679752710 = Apply (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679752716Sym0 ty) f) a_6989586621679752708) a_6989586621679752710) a_6989586621679752708) a_6989586621679752710 

sOn :: forall b c a (t :: (~>) b ((~>) b c)) (t :: (~>) a b) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply OnSym0 t) t) t) t :: c) infixl 0 Source #

Defunctionalization symbols

data IdSym0 :: forall a6989586621679541558. (~>) a6989586621679541558 a6989586621679541558 Source #

Instances

Instances details
SingI (IdSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing IdSym0 Source #

SuppressUnusedWarnings (IdSym0 :: TyFun a6989586621679541558 a6989586621679541558 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679541753 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679541753 :: a) = Id a6989586621679541753

type IdSym1 (a6989586621679541753 :: a6989586621679541558) = Id a6989586621679541753 Source #

data ConstSym0 :: forall a6989586621679541556 b6989586621679541557. (~>) a6989586621679541556 ((~>) b6989586621679541557 a6989586621679541556) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings (ConstSym0 :: TyFun a6989586621679541556 (b6989586621679541557 ~> a6989586621679541556) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym0 :: TyFun a6989586621679541556 (b6989586621679541557 ~> a6989586621679541556) -> Type) (a6989586621679541748 :: a6989586621679541556) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym0 :: TyFun a6989586621679541556 (b6989586621679541557 ~> a6989586621679541556) -> Type) (a6989586621679541748 :: a6989586621679541556) = ConstSym1 a6989586621679541748 b6989586621679541557 :: TyFun b6989586621679541557 a6989586621679541556 -> Type

data ConstSym1 (a6989586621679541748 :: a6989586621679541556) :: forall b6989586621679541557. (~>) b6989586621679541557 a6989586621679541556 Source #

Instances

Instances details
SingI d => SingI (ConstSym1 d b :: TyFun b a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (ConstSym1 d b) Source #

SuppressUnusedWarnings (ConstSym1 a6989586621679541748 b6989586621679541557 :: TyFun b6989586621679541557 a6989586621679541556 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym1 a6989586621679541748 b :: TyFun b a -> Type) (a6989586621679541749 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (ConstSym1 a6989586621679541748 b :: TyFun b a -> Type) (a6989586621679541749 :: b) = Const a6989586621679541748 a6989586621679541749

type ConstSym2 (a6989586621679541748 :: a6989586621679541556) (a6989586621679541749 :: b6989586621679541557) = Const a6989586621679541748 a6989586621679541749 Source #

data (.@#@$) :: forall b6989586621679541553 c6989586621679541554 a6989586621679541555. (~>) ((~>) b6989586621679541553 c6989586621679541554) ((~>) ((~>) a6989586621679541555 b6989586621679541553) ((~>) a6989586621679541555 c6989586621679541554)) infixr 9 Source #

Instances

Instances details
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings ((.@#@$) :: TyFun (b6989586621679541553 ~> c6989586621679541554) ((a6989586621679541555 ~> b6989586621679541553) ~> (a6989586621679541555 ~> c6989586621679541554)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply ((.@#@$) :: TyFun (b6989586621679541553 ~> c6989586621679541554) ((a6989586621679541555 ~> b6989586621679541553) ~> (a6989586621679541555 ~> c6989586621679541554)) -> Type) (a6989586621679541729 :: b6989586621679541553 ~> c6989586621679541554) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply ((.@#@$) :: TyFun (b6989586621679541553 ~> c6989586621679541554) ((a6989586621679541555 ~> b6989586621679541553) ~> (a6989586621679541555 ~> c6989586621679541554)) -> Type) (a6989586621679541729 :: b6989586621679541553 ~> c6989586621679541554) = a6989586621679541729 .@#@$$ a6989586621679541555 :: TyFun (a6989586621679541555 ~> b6989586621679541553) (a6989586621679541555 ~> c6989586621679541554) -> Type

data (.@#@$$) (a6989586621679541729 :: (~>) b6989586621679541553 c6989586621679541554) :: forall a6989586621679541555. (~>) ((~>) a6989586621679541555 b6989586621679541553) ((~>) a6989586621679541555 c6989586621679541554) infixr 9 Source #

Instances

Instances details
SingI d => SingI (d .@#@$$ a :: TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (d .@#@$$ a) Source #

SuppressUnusedWarnings (a6989586621679541729 .@#@$$ a6989586621679541555 :: TyFun (a6989586621679541555 ~> b6989586621679541553) (a6989586621679541555 ~> c6989586621679541554) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541729 .@#@$$ a6989586621679541555 :: TyFun (a6989586621679541555 ~> b6989586621679541553) (a6989586621679541555 ~> c6989586621679541554) -> Type) (a6989586621679541730 :: a6989586621679541555 ~> b6989586621679541553) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541729 .@#@$$ a6989586621679541555 :: TyFun (a6989586621679541555 ~> b6989586621679541553) (a6989586621679541555 ~> c6989586621679541554) -> Type) (a6989586621679541730 :: a6989586621679541555 ~> b6989586621679541553) = a6989586621679541729 .@#@$$$ a6989586621679541730

data (a6989586621679541729 :: (~>) b6989586621679541553 c6989586621679541554) .@#@$$$ (a6989586621679541730 :: (~>) a6989586621679541555 b6989586621679541553) :: (~>) a6989586621679541555 c6989586621679541554 infixr 9 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (d1 .@#@$$$ d2) Source #

SuppressUnusedWarnings (a6989586621679541730 .@#@$$$ a6989586621679541729 :: TyFun a6989586621679541555 c6989586621679541554 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541730 .@#@$$$ a6989586621679541729 :: TyFun a c -> Type) (a6989586621679541731 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (a6989586621679541730 .@#@$$$ a6989586621679541729 :: TyFun a c -> Type) (a6989586621679541731 :: a) = (a6989586621679541730 . a6989586621679541729) a6989586621679541731

type (.@#@$$$$) (a6989586621679541729 :: (~>) b6989586621679541553 c6989586621679541554) (a6989586621679541730 :: (~>) a6989586621679541555 b6989586621679541553) (a6989586621679541731 :: a6989586621679541555) = (.) a6989586621679541729 a6989586621679541730 a6989586621679541731 Source #

data FlipSym0 :: forall a6989586621679541550 b6989586621679541551 c6989586621679541552. (~>) ((~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) ((~>) b6989586621679541551 ((~>) a6989586621679541550 c6989586621679541552)) Source #

Instances

Instances details
SingI (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings (FlipSym0 :: TyFun (a6989586621679541550 ~> (b6989586621679541551 ~> c6989586621679541552)) (b6989586621679541551 ~> (a6989586621679541550 ~> c6989586621679541552)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym0 :: TyFun (a6989586621679541550 ~> (b6989586621679541551 ~> c6989586621679541552)) (b6989586621679541551 ~> (a6989586621679541550 ~> c6989586621679541552)) -> Type) (a6989586621679541720 :: a6989586621679541550 ~> (b6989586621679541551 ~> c6989586621679541552)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym0 :: TyFun (a6989586621679541550 ~> (b6989586621679541551 ~> c6989586621679541552)) (b6989586621679541551 ~> (a6989586621679541550 ~> c6989586621679541552)) -> Type) (a6989586621679541720 :: a6989586621679541550 ~> (b6989586621679541551 ~> c6989586621679541552)) = FlipSym1 a6989586621679541720

data FlipSym1 (a6989586621679541720 :: (~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) :: (~>) b6989586621679541551 ((~>) a6989586621679541550 c6989586621679541552) Source #

Instances

Instances details
SingI d => SingI (FlipSym1 d :: TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (FlipSym1 d) Source #

SuppressUnusedWarnings (FlipSym1 a6989586621679541720 :: TyFun b6989586621679541551 (a6989586621679541550 ~> c6989586621679541552) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym1 a6989586621679541720 :: TyFun b6989586621679541551 (a6989586621679541550 ~> c6989586621679541552) -> Type) (a6989586621679541721 :: b6989586621679541551) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym1 a6989586621679541720 :: TyFun b6989586621679541551 (a6989586621679541550 ~> c6989586621679541552) -> Type) (a6989586621679541721 :: b6989586621679541551) = FlipSym2 a6989586621679541720 a6989586621679541721

data FlipSym2 (a6989586621679541720 :: (~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) (a6989586621679541721 :: b6989586621679541551) :: (~>) a6989586621679541550 c6989586621679541552 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI (FlipSym2 d1 d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (FlipSym2 d1 d2) Source #

SuppressUnusedWarnings (FlipSym2 a6989586621679541721 a6989586621679541720 :: TyFun a6989586621679541550 c6989586621679541552 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym2 a6989586621679541721 a6989586621679541720 :: TyFun a c -> Type) (a6989586621679541722 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (FlipSym2 a6989586621679541721 a6989586621679541720 :: TyFun a c -> Type) (a6989586621679541722 :: a) = Flip a6989586621679541721 a6989586621679541720 a6989586621679541722

type FlipSym3 (a6989586621679541720 :: (~>) a6989586621679541550 ((~>) b6989586621679541551 c6989586621679541552)) (a6989586621679541721 :: b6989586621679541551) (a6989586621679541722 :: a6989586621679541550) = Flip a6989586621679541720 a6989586621679541721 a6989586621679541722 Source #

data ($@#@$) :: forall a6989586621679541547 b6989586621679541548. (~>) ((~>) a6989586621679541547 b6989586621679541548) ((~>) a6989586621679541547 b6989586621679541548) infixr 0 Source #

Instances

Instances details
SingI (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

SuppressUnusedWarnings (($@#@$) :: TyFun (a6989586621679541547 ~> b6989586621679541548) (a6989586621679541547 ~> b6989586621679541548) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$) :: TyFun (a6989586621679541547 ~> b6989586621679541548) (a6989586621679541547 ~> b6989586621679541548) -> Type) (a6989586621679541704 :: a6989586621679541547 ~> b6989586621679541548) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$) :: TyFun (a6989586621679541547 ~> b6989586621679541548) (a6989586621679541547 ~> b6989586621679541548) -> Type) (a6989586621679541704 :: a6989586621679541547 ~> b6989586621679541548) = ($@#@$$) a6989586621679541704

data ($@#@$$) (a6989586621679541704 :: (~>) a6989586621679541547 b6989586621679541548) :: (~>) a6989586621679541547 b6989586621679541548 infixr 0 Source #

Instances

Instances details
SingI d => SingI (($@#@$$) d :: TyFun a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

Methods

sing :: Sing (($@#@$$) d) Source #

SuppressUnusedWarnings (($@#@$$) a6989586621679541704 :: TyFun a6989586621679541547 b6989586621679541548 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$$) a6989586621679541704 :: TyFun a b -> Type) (a6989586621679541705 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Base

type Apply (($@#@$$) a6989586621679541704 :: TyFun a b -> Type) (a6989586621679541705 :: a) = a6989586621679541704 $ a6989586621679541705

type ($@#@$$$) (a6989586621679541704 :: (~>) a6989586621679541547 b6989586621679541548) (a6989586621679541705 :: a6989586621679541547) = ($) a6989586621679541704 a6989586621679541705 Source #

data (&@#@$) :: forall a6989586621679752681 b6989586621679752682. (~>) a6989586621679752681 ((~>) ((~>) a6989586621679752681 b6989586621679752682) b6989586621679752682) infixl 1 Source #

Instances

Instances details
SingI ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

SuppressUnusedWarnings ((&@#@$) :: TyFun a6989586621679752681 ((a6989586621679752681 ~> b6989586621679752682) ~> b6989586621679752682) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply ((&@#@$) :: TyFun a6989586621679752681 ((a6989586621679752681 ~> b6989586621679752682) ~> b6989586621679752682) -> Type) (a6989586621679752694 :: a6989586621679752681) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply ((&@#@$) :: TyFun a6989586621679752681 ((a6989586621679752681 ~> b6989586621679752682) ~> b6989586621679752682) -> Type) (a6989586621679752694 :: a6989586621679752681) = a6989586621679752694 &@#@$$ b6989586621679752682 :: TyFun (a6989586621679752681 ~> b6989586621679752682) b6989586621679752682 -> Type

data (&@#@$$) (a6989586621679752694 :: a6989586621679752681) :: forall b6989586621679752682. (~>) ((~>) a6989586621679752681 b6989586621679752682) b6989586621679752682 infixl 1 Source #

Instances

Instances details
SingI d => SingI (d &@#@$$ b :: TyFun (a ~> b) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (d &@#@$$ b) Source #

SuppressUnusedWarnings (a6989586621679752694 &@#@$$ b6989586621679752682 :: TyFun (a6989586621679752681 ~> b6989586621679752682) b6989586621679752682 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (a6989586621679752694 &@#@$$ b :: TyFun (a ~> b) b -> Type) (a6989586621679752695 :: a ~> b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (a6989586621679752694 &@#@$$ b :: TyFun (a ~> b) b -> Type) (a6989586621679752695 :: a ~> b) = a6989586621679752694 & a6989586621679752695

type (&@#@$$$) (a6989586621679752694 :: a6989586621679752681) (a6989586621679752695 :: (~>) a6989586621679752681 b6989586621679752682) = (&) a6989586621679752694 a6989586621679752695 Source #

data OnSym0 :: forall b6989586621679752683 c6989586621679752684 a6989586621679752685. (~>) ((~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) ((~>) ((~>) a6989586621679752685 b6989586621679752683) ((~>) a6989586621679752685 ((~>) a6989586621679752685 c6989586621679752684))) infixl 0 Source #

Instances

Instances details
SingI (OnSym0 :: TyFun (b ~> (b ~> c)) ((a ~> b) ~> (a ~> (a ~> c))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing OnSym0 Source #

SuppressUnusedWarnings (OnSym0 :: TyFun (b6989586621679752683 ~> (b6989586621679752683 ~> c6989586621679752684)) ((a6989586621679752685 ~> b6989586621679752683) ~> (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym0 :: TyFun (b6989586621679752683 ~> (b6989586621679752683 ~> c6989586621679752684)) ((a6989586621679752685 ~> b6989586621679752683) ~> (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684))) -> Type) (a6989586621679752700 :: b6989586621679752683 ~> (b6989586621679752683 ~> c6989586621679752684)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym0 :: TyFun (b6989586621679752683 ~> (b6989586621679752683 ~> c6989586621679752684)) ((a6989586621679752685 ~> b6989586621679752683) ~> (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684))) -> Type) (a6989586621679752700 :: b6989586621679752683 ~> (b6989586621679752683 ~> c6989586621679752684)) = OnSym1 a6989586621679752700 a6989586621679752685 :: TyFun (a6989586621679752685 ~> b6989586621679752683) (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684)) -> Type

data OnSym1 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) :: forall a6989586621679752685. (~>) ((~>) a6989586621679752685 b6989586621679752683) ((~>) a6989586621679752685 ((~>) a6989586621679752685 c6989586621679752684)) infixl 0 Source #

Instances

Instances details
SingI d => SingI (OnSym1 d a :: TyFun (a ~> b) (a ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (OnSym1 d a) Source #

SuppressUnusedWarnings (OnSym1 a6989586621679752700 a6989586621679752685 :: TyFun (a6989586621679752685 ~> b6989586621679752683) (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym1 a6989586621679752700 a6989586621679752685 :: TyFun (a6989586621679752685 ~> b6989586621679752683) (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684)) -> Type) (a6989586621679752701 :: a6989586621679752685 ~> b6989586621679752683) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym1 a6989586621679752700 a6989586621679752685 :: TyFun (a6989586621679752685 ~> b6989586621679752683) (a6989586621679752685 ~> (a6989586621679752685 ~> c6989586621679752684)) -> Type) (a6989586621679752701 :: a6989586621679752685 ~> b6989586621679752683) = OnSym2 a6989586621679752700 a6989586621679752701

data OnSym2 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) (a6989586621679752701 :: (~>) a6989586621679752685 b6989586621679752683) :: (~>) a6989586621679752685 ((~>) a6989586621679752685 c6989586621679752684) infixl 0 Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI (OnSym2 d1 d2 :: TyFun a (a ~> c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (OnSym2 d1 d2) Source #

SuppressUnusedWarnings (OnSym2 a6989586621679752701 a6989586621679752700 :: TyFun a6989586621679752685 (a6989586621679752685 ~> c6989586621679752684) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym2 a6989586621679752701 a6989586621679752700 :: TyFun a6989586621679752685 (a6989586621679752685 ~> c6989586621679752684) -> Type) (a6989586621679752702 :: a6989586621679752685) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym2 a6989586621679752701 a6989586621679752700 :: TyFun a6989586621679752685 (a6989586621679752685 ~> c6989586621679752684) -> Type) (a6989586621679752702 :: a6989586621679752685) = OnSym3 a6989586621679752701 a6989586621679752700 a6989586621679752702

data OnSym3 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) (a6989586621679752701 :: (~>) a6989586621679752685 b6989586621679752683) (a6989586621679752702 :: a6989586621679752685) :: (~>) a6989586621679752685 c6989586621679752684 infixl 0 Source #

Instances

Instances details
(SingI d1, SingI d2, SingI d3) => SingI (OnSym3 d1 d2 d3 :: TyFun a c -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

Methods

sing :: Sing (OnSym3 d1 d2 d3) Source #

SuppressUnusedWarnings (OnSym3 a6989586621679752702 a6989586621679752701 a6989586621679752700 :: TyFun a6989586621679752685 c6989586621679752684 -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym3 a6989586621679752702 a6989586621679752701 a6989586621679752700 :: TyFun a c -> Type) (a6989586621679752703 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Function

type Apply (OnSym3 a6989586621679752702 a6989586621679752701 a6989586621679752700 :: TyFun a c -> Type) (a6989586621679752703 :: a) = On a6989586621679752702 a6989586621679752701 a6989586621679752700 a6989586621679752703

type OnSym4 (a6989586621679752700 :: (~>) b6989586621679752683 ((~>) b6989586621679752683 c6989586621679752684)) (a6989586621679752701 :: (~>) a6989586621679752685 b6989586621679752683) (a6989586621679752702 :: a6989586621679752685) (a6989586621679752703 :: a6989586621679752685) = On a6989586621679752700 a6989586621679752701 a6989586621679752702 a6989586621679752703 Source #