singletons-2.6: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Monad

Description

Defines the promoted and singled versions of the Monad type class.

Synopsis
  • class PFunctor (f :: Type -> Type) where
    • type Fmap (arg :: (~>) a b) (arg :: f a) :: f b
  • class SFunctor (f :: Type -> Type) where
  • class PMonad (m :: Type -> Type) where
    • type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b
    • type (arg :: m a) >> (arg :: m b) :: m b
    • type Return (arg :: a) :: m a
  • class SApplicative m => SMonad (m :: Type -> Type) where
  • class PMonadPlus (m :: Type -> Type) where
    • type Mzero :: m a
    • type Mplus (arg :: m a) (arg :: m a) :: m a
  • class (SAlternative m, SMonad m) => SMonadPlus (m :: Type -> Type) where
  • class PMonadFail (m :: Type -> Type) where
    • type Fail (arg :: [Char]) :: m a
  • class SMonad m => SMonadFail (m :: Type -> Type) where
  • type family MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b)
  • sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b))
  • type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
  • sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
  • type family ForM (a :: t a) (a :: (~>) a (m b)) :: m (t b) where ...
  • sForM :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForMSym0 t) t :: m (t b))
  • type family Sequence (arg :: t (m a)) :: m (t a)
  • sSequence :: forall m a (t :: t (m a)). (STraversable t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a))
  • type family Sequence_ (a :: t (m a)) :: m () where ...
  • sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
  • type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ...
  • (%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b)
  • type family ((a :: (~>) a (m b)) >=> (a :: (~>) b (m c))) (a :: a) :: m c where ...
  • (%>=>) :: forall a m b c (t :: (~>) a (m b)) (t :: (~>) b (m c)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (>=>@#@$) t) t) t :: m c)
  • type family ((a :: (~>) b (m c)) <=< (a :: (~>) a (m b))) (a :: a) :: m c where ...
  • (%<=<) :: forall b m c a (t :: (~>) b (m c)) (t :: (~>) a (m b)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (<=<@#@$) t) t) t :: m c)
  • type family Void (a :: f a) :: f () where ...
  • sVoid :: forall f a (t :: f a). SFunctor f => Sing t -> Sing (Apply VoidSym0 t :: f ())
  • type family Join (a :: m (m a)) :: m a where ...
  • sJoin :: forall m a (t :: m (m a)). SMonad m => Sing t -> Sing (Apply JoinSym0 t :: m a)
  • type family Msum (a :: t (m a)) :: m a where ...
  • sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a)
  • type family Mfilter (a :: (~>) a Bool) (a :: m a) :: m a where ...
  • sMfilter :: forall a m (t :: (~>) a Bool) (t :: m a). SMonadPlus m => Sing t -> Sing t -> Sing (Apply (Apply MfilterSym0 t) t :: m a)
  • type family FilterM (a :: (~>) a (m Bool)) (a :: [a]) :: m [a] where ...
  • sFilterM :: forall a m (t :: (~>) a (m Bool)) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply FilterMSym0 t) t :: m [a])
  • type family MapAndUnzipM (a :: (~>) a (m (b, c))) (a :: [a]) :: m ([b], [c]) where ...
  • sMapAndUnzipM :: forall a m b c (t :: (~>) a (m (b, c))) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply MapAndUnzipMSym0 t) t :: m ([b], [c]))
  • type family ZipWithM (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m [c] where ...
  • sZipWithM :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithMSym0 t) t) t :: m [c])
  • type family ZipWithM_ (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m () where ...
  • sZipWithM_ :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithM_Sym0 t) t) t :: m ())
  • type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ...
  • sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b)
  • type family ReplicateM (a :: Nat) (a :: m a) :: m [a] where ...
  • sReplicateM :: forall m a (t :: Nat) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateMSym0 t) t :: m [a])
  • type family ReplicateM_ (a :: Nat) (a :: m a) :: m () where ...
  • sReplicateM_ :: forall m a (t :: Nat) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateM_Sym0 t) t :: m ())
  • type family Guard (a :: Bool) :: f () where ...
  • sGuard :: forall f (t :: Bool). SAlternative f => Sing t -> Sing (Apply GuardSym0 t :: f ())
  • type family When (a :: Bool) (a :: f ()) :: f () where ...
  • sWhen :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply WhenSym0 t) t :: f ())
  • type family Unless (a :: Bool) (a :: f ()) :: f () where ...
  • sUnless :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply UnlessSym0 t) t :: f ())
  • type family LiftM (a :: (~>) a1 r) (a :: m a1) :: m r where ...
  • sLiftM :: forall a1 r m (t :: (~>) a1 r) (t :: m a1). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply LiftMSym0 t) t :: m r)
  • type family LiftM2 (a :: (~>) a1 ((~>) a2 r)) (a :: m a1) (a :: m a2) :: m r where ...
  • sLiftM2 :: forall a1 a2 r m (t :: (~>) a1 ((~>) a2 r)) (t :: m a1) (t :: m a2). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftM2Sym0 t) t) t :: m r)
  • type family LiftM3 (a :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a :: m a1) (a :: m a2) (a :: m a3) :: m r where ...
  • sLiftM3 :: forall a1 a2 a3 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 r))) (t :: m a1) (t :: m a2) (t :: m a3). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftM3Sym0 t) t) t) t :: m r)
  • type family LiftM4 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) :: m r where ...
  • sLiftM4 :: forall a1 a2 a3 a4 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply LiftM4Sym0 t) t) t) t) t :: m r)
  • type family LiftM5 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) (a :: m a5) :: m r where ...
  • sLiftM5 :: forall a1 a2 a3 a4 a5 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4) (t :: m a5). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply (Apply LiftM5Sym0 t) t) t) t) t) t :: m r)
  • type family Ap (a :: m ((~>) a b)) (a :: m a) :: m b where ...
  • sAp :: forall m a b (t :: m ((~>) a b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply ApSym0 t) t :: m b)
  • type family (a :: (~>) a b) <$!> (a :: m a) :: m b where ...
  • (%<$!>) :: forall a b m (t :: (~>) a b) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (<$!>@#@$) t) t :: m b)
  • data FmapSym0 :: forall a6989586621679566946 b6989586621679566947 f6989586621679566945. (~>) ((~>) a6989586621679566946 b6989586621679566947) ((~>) (f6989586621679566945 a6989586621679566946) (f6989586621679566945 b6989586621679566947))
  • data FmapSym1 (arg6989586621679567337 :: (~>) a6989586621679566946 b6989586621679566947) :: forall f6989586621679566945. (~>) (f6989586621679566945 a6989586621679566946) (f6989586621679566945 b6989586621679566947)
  • type FmapSym2 (arg6989586621679567337 :: (~>) a6989586621679566946 b6989586621679566947) (arg6989586621679567338 :: f6989586621679566945 a6989586621679566946) = Fmap arg6989586621679567337 arg6989586621679567338
  • data (>>=@#@$) :: forall m6989586621679566974 a6989586621679566975 b6989586621679566976. (~>) (m6989586621679566974 a6989586621679566975) ((~>) ((~>) a6989586621679566975 (m6989586621679566974 b6989586621679566976)) (m6989586621679566974 b6989586621679566976))
  • data (>>=@#@$$) (arg6989586621679567444 :: m6989586621679566974 a6989586621679566975) :: forall b6989586621679566976. (~>) ((~>) a6989586621679566975 (m6989586621679566974 b6989586621679566976)) (m6989586621679566974 b6989586621679566976)
  • type (>>=@#@$$$) (arg6989586621679567444 :: m6989586621679566974 a6989586621679566975) (arg6989586621679567445 :: (~>) a6989586621679566975 (m6989586621679566974 b6989586621679566976)) = (>>=) arg6989586621679567444 arg6989586621679567445
  • data (>>@#@$) :: forall m6989586621679566974 a6989586621679566977 b6989586621679566978. (~>) (m6989586621679566974 a6989586621679566977) ((~>) (m6989586621679566974 b6989586621679566978) (m6989586621679566974 b6989586621679566978))
  • data (>>@#@$$) (arg6989586621679567448 :: m6989586621679566974 a6989586621679566977) :: forall b6989586621679566978. (~>) (m6989586621679566974 b6989586621679566978) (m6989586621679566974 b6989586621679566978)
  • type (>>@#@$$$) (arg6989586621679567448 :: m6989586621679566974 a6989586621679566977) (arg6989586621679567449 :: m6989586621679566974 b6989586621679566978) = (>>) arg6989586621679567448 arg6989586621679567449
  • data ReturnSym0 :: forall a6989586621679566979 m6989586621679566974. (~>) a6989586621679566979 (m6989586621679566974 a6989586621679566979)
  • type ReturnSym1 (arg6989586621679567452 :: a6989586621679566979) = Return arg6989586621679567452
  • data FailSym0 :: forall m6989586621679735037 a6989586621679735038. (~>) [Char] (m6989586621679735037 a6989586621679735038)
  • type FailSym1 (arg6989586621679735057 :: [Char]) = Fail arg6989586621679735057
  • type MzeroSym0 = Mzero
  • data MplusSym0 :: forall m6989586621679567028 a6989586621679567030. (~>) (m6989586621679567028 a6989586621679567030) ((~>) (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030))
  • data MplusSym1 (arg6989586621679567489 :: m6989586621679567028 a6989586621679567030) :: (~>) (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030)
  • type MplusSym2 (arg6989586621679567489 :: m6989586621679567028 a6989586621679567030) (arg6989586621679567490 :: m6989586621679567028 a6989586621679567030) = Mplus arg6989586621679567489 arg6989586621679567490
  • data MapMSym0 :: forall a6989586621680794826 m6989586621680794825 b6989586621680794827 t6989586621680794819. (~>) ((~>) a6989586621680794826 (m6989586621680794825 b6989586621680794827)) ((~>) (t6989586621680794819 a6989586621680794826) (m6989586621680794825 (t6989586621680794819 b6989586621680794827)))
  • data MapMSym1 (arg6989586621680794837 :: (~>) a6989586621680794826 (m6989586621680794825 b6989586621680794827)) :: forall t6989586621680794819. (~>) (t6989586621680794819 a6989586621680794826) (m6989586621680794825 (t6989586621680794819 b6989586621680794827))
  • type MapMSym2 (arg6989586621680794837 :: (~>) a6989586621680794826 (m6989586621680794825 b6989586621680794827)) (arg6989586621680794838 :: t6989586621680794819 a6989586621680794826) = MapM arg6989586621680794837 arg6989586621680794838
  • data MapM_Sym0 :: forall a6989586621680486573 m6989586621680486572 b6989586621680486574 t6989586621680486571. (~>) ((~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) ((~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()))
  • data MapM_Sym1 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) :: forall t6989586621680486571. (~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ())
  • type MapM_Sym2 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) (a6989586621680487178 :: t6989586621680486571 a6989586621680486573) = MapM_ a6989586621680487177 a6989586621680487178
  • data ForMSym0 :: forall t6989586621680800356 a6989586621680800358 m6989586621680800357 b6989586621680800359. (~>) (t6989586621680800356 a6989586621680800358) ((~>) ((~>) a6989586621680800358 (m6989586621680800357 b6989586621680800359)) (m6989586621680800357 (t6989586621680800356 b6989586621680800359)))
  • data ForMSym1 (a6989586621680800877 :: t6989586621680800356 a6989586621680800358) :: forall m6989586621680800357 b6989586621680800359. (~>) ((~>) a6989586621680800358 (m6989586621680800357 b6989586621680800359)) (m6989586621680800357 (t6989586621680800356 b6989586621680800359))
  • type ForMSym2 (a6989586621680800877 :: t6989586621680800356 a6989586621680800358) (a6989586621680800878 :: (~>) a6989586621680800358 (m6989586621680800357 b6989586621680800359)) = ForM a6989586621680800877 a6989586621680800878
  • data SequenceSym0 :: forall t6989586621680794819 m6989586621680794828 a6989586621680794829. (~>) (t6989586621680794819 (m6989586621680794828 a6989586621680794829)) (m6989586621680794828 (t6989586621680794819 a6989586621680794829))
  • type SequenceSym1 (arg6989586621680794841 :: t6989586621680794819 (m6989586621680794828 a6989586621680794829)) = Sequence arg6989586621680794841
  • data Sequence_Sym0 :: forall t6989586621680486561 m6989586621680486562 a6989586621680486563. (~>) (t6989586621680486561 (m6989586621680486562 a6989586621680486563)) (m6989586621680486562 ())
  • type Sequence_Sym1 (a6989586621680487159 :: t6989586621680486561 (m6989586621680486562 a6989586621680486563)) = Sequence_ a6989586621680487159
  • data (=<<@#@$) :: forall a6989586621679566898 m6989586621679566897 b6989586621679566899. (~>) ((~>) a6989586621679566898 (m6989586621679566897 b6989586621679566899)) ((~>) (m6989586621679566897 a6989586621679566898) (m6989586621679566897 b6989586621679566899))
  • data (=<<@#@$$) (a6989586621679567290 :: (~>) a6989586621679566898 (m6989586621679566897 b6989586621679566899)) :: (~>) (m6989586621679566897 a6989586621679566898) (m6989586621679566897 b6989586621679566899)
  • type (=<<@#@$$$) (a6989586621679567290 :: (~>) a6989586621679566898 (m6989586621679566897 b6989586621679566899)) (a6989586621679567291 :: m6989586621679566897 a6989586621679566898) = (=<<) a6989586621679567290 a6989586621679567291
  • data (>=>@#@$) :: forall a6989586621681271041 m6989586621681271040 b6989586621681271042 c6989586621681271043. (~>) ((~>) a6989586621681271041 (m6989586621681271040 b6989586621681271042)) ((~>) ((~>) b6989586621681271042 (m6989586621681271040 c6989586621681271043)) ((~>) a6989586621681271041 (m6989586621681271040 c6989586621681271043)))
  • data (>=>@#@$$) (a6989586621681271473 :: (~>) a6989586621681271041 (m6989586621681271040 b6989586621681271042)) :: forall c6989586621681271043. (~>) ((~>) b6989586621681271042 (m6989586621681271040 c6989586621681271043)) ((~>) a6989586621681271041 (m6989586621681271040 c6989586621681271043))
  • data (a6989586621681271473 :: (~>) a6989586621681271041 (m6989586621681271040 b6989586621681271042)) >=>@#@$$$ (a6989586621681271474 :: (~>) b6989586621681271042 (m6989586621681271040 c6989586621681271043)) :: (~>) a6989586621681271041 (m6989586621681271040 c6989586621681271043)
  • data (<=<@#@$) :: forall b6989586621681271037 m6989586621681271036 c6989586621681271038 a6989586621681271039. (~>) ((~>) b6989586621681271037 (m6989586621681271036 c6989586621681271038)) ((~>) ((~>) a6989586621681271039 (m6989586621681271036 b6989586621681271037)) ((~>) a6989586621681271039 (m6989586621681271036 c6989586621681271038)))
  • data (<=<@#@$$) (a6989586621681271464 :: (~>) b6989586621681271037 (m6989586621681271036 c6989586621681271038)) :: forall a6989586621681271039. (~>) ((~>) a6989586621681271039 (m6989586621681271036 b6989586621681271037)) ((~>) a6989586621681271039 (m6989586621681271036 c6989586621681271038))
  • data (a6989586621681271464 :: (~>) b6989586621681271037 (m6989586621681271036 c6989586621681271038)) <=<@#@$$$ (a6989586621681271465 :: (~>) a6989586621681271039 (m6989586621681271036 b6989586621681271037)) :: (~>) a6989586621681271039 (m6989586621681271036 c6989586621681271038)
  • data VoidSym0 :: forall f6989586621679737113 a6989586621679737114. (~>) (f6989586621679737113 a6989586621679737114) (f6989586621679737113 ())
  • type VoidSym1 (a6989586621679737180 :: f6989586621679737113 a6989586621679737114) = Void a6989586621679737180
  • data JoinSym0 :: forall m6989586621679566900 a6989586621679566901. (~>) (m6989586621679566900 (m6989586621679566900 a6989586621679566901)) (m6989586621679566900 a6989586621679566901)
  • type JoinSym1 (a6989586621679567296 :: m6989586621679566900 (m6989586621679566900 a6989586621679566901)) = Join a6989586621679567296
  • data MsumSym0 :: forall t6989586621680486555 m6989586621680486556 a6989586621680486557. (~>) (t6989586621680486555 (m6989586621680486556 a6989586621680486557)) (m6989586621680486556 a6989586621680486557)
  • type MsumSym1 (a6989586621680487149 :: t6989586621680486555 (m6989586621680486556 a6989586621680486557)) = Msum a6989586621680487149
  • data MfilterSym0 :: forall a6989586621681271007 m6989586621681271006. (~>) ((~>) a6989586621681271007 Bool) ((~>) (m6989586621681271006 a6989586621681271007) (m6989586621681271006 a6989586621681271007))
  • data MfilterSym1 (a6989586621681271326 :: (~>) a6989586621681271007 Bool) :: forall m6989586621681271006. (~>) (m6989586621681271006 a6989586621681271007) (m6989586621681271006 a6989586621681271007)
  • type MfilterSym2 (a6989586621681271326 :: (~>) a6989586621681271007 Bool) (a6989586621681271327 :: m6989586621681271006 a6989586621681271007) = Mfilter a6989586621681271326 a6989586621681271327
  • data FilterMSym0 :: forall a6989586621681271045 m6989586621681271044. (~>) ((~>) a6989586621681271045 (m6989586621681271044 Bool)) ((~>) [a6989586621681271045] (m6989586621681271044 [a6989586621681271045]))
  • data FilterMSym1 (a6989586621681271492 :: (~>) a6989586621681271045 (m6989586621681271044 Bool)) :: (~>) [a6989586621681271045] (m6989586621681271044 [a6989586621681271045])
  • type FilterMSym2 (a6989586621681271492 :: (~>) a6989586621681271045 (m6989586621681271044 Bool)) (a6989586621681271493 :: [a6989586621681271045]) = FilterM a6989586621681271492 a6989586621681271493
  • data MapAndUnzipMSym0 :: forall a6989586621681271033 m6989586621681271032 b6989586621681271034 c6989586621681271035. (~>) ((~>) a6989586621681271033 (m6989586621681271032 (b6989586621681271034, c6989586621681271035))) ((~>) [a6989586621681271033] (m6989586621681271032 ([b6989586621681271034], [c6989586621681271035])))
  • data MapAndUnzipMSym1 (a6989586621681271452 :: (~>) a6989586621681271033 (m6989586621681271032 (b6989586621681271034, c6989586621681271035))) :: (~>) [a6989586621681271033] (m6989586621681271032 ([b6989586621681271034], [c6989586621681271035]))
  • type MapAndUnzipMSym2 (a6989586621681271452 :: (~>) a6989586621681271033 (m6989586621681271032 (b6989586621681271034, c6989586621681271035))) (a6989586621681271453 :: [a6989586621681271033]) = MapAndUnzipM a6989586621681271452 a6989586621681271453
  • data ZipWithMSym0 :: forall a6989586621681271029 b6989586621681271030 m6989586621681271028 c6989586621681271031. (~>) ((~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) ((~>) [a6989586621681271029] ((~>) [b6989586621681271030] (m6989586621681271028 [c6989586621681271031])))
  • data ZipWithMSym1 (a6989586621681271443 :: (~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) :: (~>) [a6989586621681271029] ((~>) [b6989586621681271030] (m6989586621681271028 [c6989586621681271031]))
  • data ZipWithMSym2 (a6989586621681271443 :: (~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) (a6989586621681271444 :: [a6989586621681271029]) :: (~>) [b6989586621681271030] (m6989586621681271028 [c6989586621681271031])
  • type ZipWithMSym3 (a6989586621681271443 :: (~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) (a6989586621681271444 :: [a6989586621681271029]) (a6989586621681271445 :: [b6989586621681271030]) = ZipWithM a6989586621681271443 a6989586621681271444 a6989586621681271445
  • data ZipWithM_Sym0 :: forall a6989586621681271025 b6989586621681271026 m6989586621681271024 c6989586621681271027. (~>) ((~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) ((~>) [a6989586621681271025] ((~>) [b6989586621681271026] (m6989586621681271024 ())))
  • data ZipWithM_Sym1 (a6989586621681271434 :: (~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) :: (~>) [a6989586621681271025] ((~>) [b6989586621681271026] (m6989586621681271024 ()))
  • data ZipWithM_Sym2 (a6989586621681271434 :: (~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) (a6989586621681271435 :: [a6989586621681271025]) :: (~>) [b6989586621681271026] (m6989586621681271024 ())
  • type ZipWithM_Sym3 (a6989586621681271434 :: (~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) (a6989586621681271435 :: [a6989586621681271025]) (a6989586621681271436 :: [b6989586621681271026]) = ZipWithM_ a6989586621681271434 a6989586621681271435 a6989586621681271436
  • data FoldlMSym0 :: forall b6989586621680486585 a6989586621680486586 m6989586621680486584 t6989586621680486583. (~>) ((~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) ((~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585)))
  • data FoldlMSym1 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) :: forall t6989586621680486583. (~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585))
  • data FoldlMSym2 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) :: forall t6989586621680486583. (~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585)
  • type FoldlMSym3 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) (a6989586621680487205 :: t6989586621680486583 a6989586621680486586) = FoldlM a6989586621680487203 a6989586621680487204 a6989586621680487205
  • data ReplicateMSym0 :: forall m6989586621681271014 a6989586621681271015. (~>) Nat ((~>) (m6989586621681271014 a6989586621681271015) (m6989586621681271014 [a6989586621681271015]))
  • data ReplicateMSym1 (a6989586621681271391 :: Nat) :: forall m6989586621681271014 a6989586621681271015. (~>) (m6989586621681271014 a6989586621681271015) (m6989586621681271014 [a6989586621681271015])
  • type ReplicateMSym2 (a6989586621681271391 :: Nat) (a6989586621681271392 :: m6989586621681271014 a6989586621681271015) = ReplicateM a6989586621681271391 a6989586621681271392
  • data ReplicateM_Sym0 :: forall m6989586621681271012 a6989586621681271013. (~>) Nat ((~>) (m6989586621681271012 a6989586621681271013) (m6989586621681271012 ()))
  • data ReplicateM_Sym1 (a6989586621681271372 :: Nat) :: forall m6989586621681271012 a6989586621681271013. (~>) (m6989586621681271012 a6989586621681271013) (m6989586621681271012 ())
  • type ReplicateM_Sym2 (a6989586621681271372 :: Nat) (a6989586621681271373 :: m6989586621681271012 a6989586621681271013) = ReplicateM_ a6989586621681271372 a6989586621681271373
  • data GuardSym0 :: forall f6989586621679566867. (~>) Bool (f6989586621679566867 ())
  • type GuardSym1 (a6989586621679567033 :: Bool) = Guard a6989586621679567033
  • data WhenSym0 :: forall f6989586621679566896. (~>) Bool ((~>) (f6989586621679566896 ()) (f6989586621679566896 ()))
  • data WhenSym1 (a6989586621679567281 :: Bool) :: forall f6989586621679566896. (~>) (f6989586621679566896 ()) (f6989586621679566896 ())
  • type WhenSym2 (a6989586621679567281 :: Bool) (a6989586621679567282 :: f6989586621679566896 ()) = When a6989586621679567281 a6989586621679567282
  • data UnlessSym0 :: forall f6989586621681271011. (~>) Bool ((~>) (f6989586621681271011 ()) (f6989586621681271011 ()))
  • data UnlessSym1 (a6989586621681271363 :: Bool) :: forall f6989586621681271011. (~>) (f6989586621681271011 ()) (f6989586621681271011 ())
  • type UnlessSym2 (a6989586621681271363 :: Bool) (a6989586621681271364 :: f6989586621681271011 ()) = Unless a6989586621681271363 a6989586621681271364
  • data LiftMSym0 :: forall a16989586621679566894 r6989586621679566895 m6989586621679566893. (~>) ((~>) a16989586621679566894 r6989586621679566895) ((~>) (m6989586621679566893 a16989586621679566894) (m6989586621679566893 r6989586621679566895))
  • data LiftMSym1 (a6989586621679567268 :: (~>) a16989586621679566894 r6989586621679566895) :: forall m6989586621679566893. (~>) (m6989586621679566893 a16989586621679566894) (m6989586621679566893 r6989586621679566895)
  • type LiftMSym2 (a6989586621679567268 :: (~>) a16989586621679566894 r6989586621679566895) (a6989586621679567269 :: m6989586621679566893 a16989586621679566894) = LiftM a6989586621679567268 a6989586621679567269
  • data LiftM2Sym0 :: forall a16989586621679566890 a26989586621679566891 r6989586621679566892 m6989586621679566889. (~>) ((~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) ((~>) (m6989586621679566889 a16989586621679566890) ((~>) (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892)))
  • data LiftM2Sym1 (a6989586621679567242 :: (~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) :: forall m6989586621679566889. (~>) (m6989586621679566889 a16989586621679566890) ((~>) (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892))
  • data LiftM2Sym2 (a6989586621679567242 :: (~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) (a6989586621679567243 :: m6989586621679566889 a16989586621679566890) :: (~>) (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892)
  • type LiftM2Sym3 (a6989586621679567242 :: (~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) (a6989586621679567243 :: m6989586621679566889 a16989586621679566890) (a6989586621679567244 :: m6989586621679566889 a26989586621679566891) = LiftM2 a6989586621679567242 a6989586621679567243 a6989586621679567244
  • data LiftM3Sym0 :: forall a16989586621679566885 a26989586621679566886 a36989586621679566887 r6989586621679566888 m6989586621679566884. (~>) ((~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) ((~>) (m6989586621679566884 a16989586621679566885) ((~>) (m6989586621679566884 a26989586621679566886) ((~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888))))
  • data LiftM3Sym1 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) :: forall m6989586621679566884. (~>) (m6989586621679566884 a16989586621679566885) ((~>) (m6989586621679566884 a26989586621679566886) ((~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888)))
  • data LiftM3Sym2 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) :: (~>) (m6989586621679566884 a26989586621679566886) ((~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888))
  • data LiftM3Sym3 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) (a6989586621679567202 :: m6989586621679566884 a26989586621679566886) :: (~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888)
  • type LiftM3Sym4 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) (a6989586621679567202 :: m6989586621679566884 a26989586621679566886) (a6989586621679567203 :: m6989586621679566884 a36989586621679566887) = LiftM3 a6989586621679567200 a6989586621679567201 a6989586621679567202 a6989586621679567203
  • data LiftM4Sym0 :: forall a16989586621679566879 a26989586621679566880 a36989586621679566881 a46989586621679566882 r6989586621679566883 m6989586621679566878. (~>) ((~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) ((~>) (m6989586621679566878 a16989586621679566879) ((~>) (m6989586621679566878 a26989586621679566880) ((~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883)))))
  • data LiftM4Sym1 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) :: forall m6989586621679566878. (~>) (m6989586621679566878 a16989586621679566879) ((~>) (m6989586621679566878 a26989586621679566880) ((~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883))))
  • data LiftM4Sym2 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) :: (~>) (m6989586621679566878 a26989586621679566880) ((~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883)))
  • data LiftM4Sym3 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) :: (~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883))
  • data LiftM4Sym4 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) (a6989586621679567142 :: m6989586621679566878 a36989586621679566881) :: (~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883)
  • type LiftM4Sym5 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) (a6989586621679567142 :: m6989586621679566878 a36989586621679566881) (a6989586621679567143 :: m6989586621679566878 a46989586621679566882) = LiftM4 a6989586621679567139 a6989586621679567140 a6989586621679567141 a6989586621679567142 a6989586621679567143
  • data LiftM5Sym0 :: forall a16989586621679566872 a26989586621679566873 a36989586621679566874 a46989586621679566875 a56989586621679566876 r6989586621679566877 m6989586621679566871. (~>) ((~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) ((~>) (m6989586621679566871 a16989586621679566872) ((~>) (m6989586621679566871 a26989586621679566873) ((~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877))))))
  • data LiftM5Sym1 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) :: forall m6989586621679566871. (~>) (m6989586621679566871 a16989586621679566872) ((~>) (m6989586621679566871 a26989586621679566873) ((~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877)))))
  • data LiftM5Sym2 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) :: (~>) (m6989586621679566871 a26989586621679566873) ((~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877))))
  • data LiftM5Sym3 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) :: (~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877)))
  • data LiftM5Sym4 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) :: (~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877))
  • data LiftM5Sym5 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) (a6989586621679567060 :: m6989586621679566871 a46989586621679566875) :: (~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877)
  • type LiftM5Sym6 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) (a6989586621679567060 :: m6989586621679566871 a46989586621679566875) (a6989586621679567061 :: m6989586621679566871 a56989586621679566876) = LiftM5 a6989586621679567056 a6989586621679567057 a6989586621679567058 a6989586621679567059 a6989586621679567060 a6989586621679567061
  • data ApSym0 :: forall m6989586621679566868 a6989586621679566869 b6989586621679566870. (~>) (m6989586621679566868 ((~>) a6989586621679566869 b6989586621679566870)) ((~>) (m6989586621679566868 a6989586621679566869) (m6989586621679566868 b6989586621679566870))
  • data ApSym1 (a6989586621679567035 :: m6989586621679566868 ((~>) a6989586621679566869 b6989586621679566870)) :: (~>) (m6989586621679566868 a6989586621679566869) (m6989586621679566868 b6989586621679566870)
  • type ApSym2 (a6989586621679567035 :: m6989586621679566868 ((~>) a6989586621679566869 b6989586621679566870)) (a6989586621679567036 :: m6989586621679566868 a6989586621679566869) = Ap a6989586621679567035 a6989586621679567036
  • data (<$!>@#@$) :: forall a6989586621681271009 b6989586621681271010 m6989586621681271008. (~>) ((~>) a6989586621681271009 b6989586621681271010) ((~>) (m6989586621681271008 a6989586621681271009) (m6989586621681271008 b6989586621681271010))
  • data (<$!>@#@$$) (a6989586621681271346 :: (~>) a6989586621681271009 b6989586621681271010) :: forall m6989586621681271008. (~>) (m6989586621681271008 a6989586621681271009) (m6989586621681271008 b6989586621681271010)
  • type (<$!>@#@$$$) (a6989586621681271346 :: (~>) a6989586621681271009 b6989586621681271010) (a6989586621681271347 :: m6989586621681271008 a6989586621681271009) = (<$!>) a6989586621681271346 a6989586621681271347

Documentation

class PFunctor (f :: Type -> Type) Source #

Associated Types

type Fmap (arg :: (~>) a b) (arg :: f a) :: f b Source #

Instances

Instances details
PFunctor [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fmap arg arg :: f b Source #

type arg <$ arg :: f a Source #

class SFunctor (f :: Type -> Type) where Source #

Methods

sFmap :: forall a b (t :: (~>) a b) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t :: f b) Source #

Instances

Instances details
SFunctor [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Down a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFmap :: forall a b (t :: a ~> b) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Option b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sFmap :: forall a b (t :: a ~> b) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: Either a b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFmap :: forall a0 b (t :: a0 ~> b) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a0 b (t :: a0) (t :: Arg a b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFmap :: forall a b (t :: a ~> b) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t) Source #

(%<$) :: forall a b (t :: a) (t :: Const m b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t) Source #

class PMonad (m :: Type -> Type) Source #

Associated Types

type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b infixl 1 Source #

type (arg :: m a) >> (arg :: m b) :: m b infixl 1 Source #

type (>>) a a = Apply (Apply TFHelper_6989586621679567456Sym0 a) a Source #

type Return (arg :: a) :: m a Source #

type Return a = Apply Return_6989586621679567477Sym0 a Source #

Instances

Instances details
PMonad [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad (Either e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

PMonad ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

class SApplicative m => SMonad (m :: Type -> Type) where Source #

Minimal complete definition

(%>>=)

Methods

(%>>=) :: forall a b (t :: m a) (t :: (~>) a (m b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t :: m b) infixl 1 Source #

(%>>) :: forall a b (t :: m a) (t :: m b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) infixl 1 Source #

default (%>>) :: forall a b (t :: m a) (t :: m b). (Apply (Apply (>>@#@$) t) t :: m b) ~ Apply (Apply TFHelper_6989586621679567456Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #

default sReturn :: forall a (t :: a). (Apply ReturnSym0 t :: m a) ~ Apply Return_6989586621679567477Sym0 t => Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #

Instances

Instances details
SMonad [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

(%>>=) :: forall a b (t :: [a]) (t :: a ~> [b]). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

(%>>=) :: forall a b (t :: Maybe a) (t :: a ~> Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Maybe a) (t :: Maybe b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

(%>>=) :: forall a b (t :: NonEmpty a) (t :: a ~> NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: NonEmpty a) (t :: NonEmpty b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Down Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

(%>>=) :: forall a b (t :: Down a) (t :: a ~> Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

(%>>=) :: forall a b (t :: Identity a) (t :: a ~> Identity b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Identity a) (t :: Identity b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%>>=) :: forall a b (t :: First a) (t :: a ~> First b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%>>=) :: forall a b (t :: Last a) (t :: a ~> Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%>>=) :: forall a b (t :: Max a) (t :: a ~> Max b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Max a) (t :: Max b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%>>=) :: forall a b (t :: Min a) (t :: a ~> Min b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Min a) (t :: Min b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%>>=) :: forall a b (t :: Option a) (t :: a ~> Option b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Option a) (t :: Option b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%>>=) :: forall a b (t :: Dual a) (t :: a ~> Dual b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Dual a) (t :: Dual b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%>>=) :: forall a b (t :: Product a) (t :: a ~> Product b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Product a) (t :: Product b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%>>=) :: forall a b (t :: Sum a) (t :: a ~> Sum b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Sum a) (t :: Sum b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

(%>>=) :: forall a b (t :: First a) (t :: a ~> First b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: First a) (t :: First b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

(%>>=) :: forall a b (t :: Last a) (t :: a ~> Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Last a) (t :: Last b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad (Either e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

(%>>=) :: forall a b (t :: Either e a) (t :: a ~> Either e b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Either e a) (t :: Either e b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonoid a => SMonad ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

(%>>=) :: forall a0 b (t :: (a, a0)) (t :: a0 ~> (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Apply ReturnSym0 t) Source #

class PMonadPlus (m :: Type -> Type) Source #

Associated Types

type Mzero :: m a Source #

type Mzero = Mzero_6989586621679567493Sym0 Source #

type Mplus (arg :: m a) (arg :: m a) :: m a Source #

type Mplus a a = Apply (Apply Mplus_6989586621679567497Sym0 a) a Source #

Instances

Instances details
PMonadPlus [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

PMonadPlus Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

PMonadPlus Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Mzero :: m a Source #

type Mplus arg arg :: m a Source #

class (SAlternative m, SMonad m) => SMonadPlus (m :: Type -> Type) where Source #

Minimal complete definition

Nothing

Methods

sMzero :: forall a. Sing (MzeroSym0 :: m a) Source #

default sMzero :: forall a. (MzeroSym0 :: m a) ~ Mzero_6989586621679567493Sym0 => Sing (MzeroSym0 :: m a) Source #

sMplus :: forall a (t :: m a) (t :: m a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t :: m a) Source #

default sMplus :: forall a (t :: m a) (t :: m a). (Apply (Apply MplusSym0 t) t :: m a) ~ Apply (Apply Mplus_6989586621679567497Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t :: m a) Source #

Instances

Instances details
SMonadPlus [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

SMonadPlus Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: Maybe a) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

SMonadPlus Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sMzero :: Sing MzeroSym0 Source #

sMplus :: forall a (t :: Option a) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply MplusSym0 t) t) Source #

class PMonadFail (m :: Type -> Type) Source #

Associated Types

type Fail (arg :: [Char]) :: m a Source #

Instances

Instances details
PMonadFail [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

Associated Types

type Fail arg :: m a Source #

PMonadFail Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

Associated Types

type Fail arg :: m a Source #

class SMonad m => SMonadFail (m :: Type -> Type) where Source #

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t :: m a) Source #

Instances

Instances details
SMonadFail [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t) Source #

SMonadFail Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t) Source #

type family MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b) Source #

Instances

Instances details
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Maybe a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Maybe a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: [a0]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: [a0])
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: NonEmpty a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: NonEmpty a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Dual a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Dual a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Sum a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Sum a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Product a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Product a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: First a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: First a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Last a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Last a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Identity a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Identity a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Min a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Min a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Max a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Max a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: First a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: First a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Last a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Last a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Option a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Option a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Either a a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Either a a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: (a, a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: (a, a0))
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Arg a a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Arg a a0)
type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Const m a0) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type MapM (arg1 :: a0 ~> m0 b0) (arg2 :: Const m a0)

sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #

type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #

Equations

MapM_ f a_6989586621680487181 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680487181 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family ForM (a :: t a) (a :: (~>) a (m b)) :: m (t b) where ... Source #

Equations

ForM a_6989586621680800873 a_6989586621680800875 = Apply (Apply (Apply FlipSym0 MapMSym0) a_6989586621680800873) a_6989586621680800875 

sForM :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (STraversable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForMSym0 t) t :: m (t b)) Source #

type family Sequence (arg :: t (m a)) :: m (t a) Source #

Instances

Instances details
type Sequence (arg0 :: [m0 a0]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: [m0 a0])
type Sequence (arg0 :: Maybe (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Maybe (m0 a0))
type Sequence (arg0 :: NonEmpty (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: NonEmpty (m0 a0))
type Sequence (arg0 :: Identity (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Identity (m0 a0))
type Sequence (arg0 :: First (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sequence (arg0 :: First (m0 a0))
type Sequence (arg0 :: Last (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sequence (arg0 :: Last (m0 a0))
type Sequence (arg0 :: Max (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sequence (arg0 :: Max (m0 a0))
type Sequence (arg0 :: Min (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sequence (arg0 :: Min (m0 a0))
type Sequence (arg0 :: Option (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sequence (arg0 :: Option (m0 a0))
type Sequence (arg0 :: Dual (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Dual (m0 a0))
type Sequence (arg0 :: Product (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Product (m0 a0))
type Sequence (arg0 :: Sum (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Sum (m0 a0))
type Sequence (arg0 :: First (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: First (m0 a0))
type Sequence (arg0 :: Last (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Last (m0 a0))
type Sequence (arg0 :: Either a (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Either a (m0 a0))
type Sequence (arg0 :: (a, m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: (a, m0 a0))
type Sequence (arg0 :: Arg a (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

type Sequence (arg0 :: Arg a (m0 a0))
type Sequence (arg0 :: Const m (m0 a0)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Sequence (arg0 :: Const m (m0 a0))

sSequence :: forall m a (t :: t (m a)). (STraversable t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #

type family Sequence_ (a :: t (m a)) :: m () where ... Source #

Equations

Sequence_ a_6989586621680487157 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680487157 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ... infixr 1 Source #

Equations

f =<< x = Apply (Apply (>>=@#@$) x) f 

(%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b) infixr 1 Source #

type family ((a :: (~>) a (m b)) >=> (a :: (~>) b (m c))) (a :: a) :: m c where ... infixr 1 Source #

Equations

(f >=> g) a_6989586621681271479 = Apply (Apply (Apply (Apply Lambda_6989586621681271484Sym0 f) g) a_6989586621681271479) a_6989586621681271479 

(%>=>) :: forall a m b c (t :: (~>) a (m b)) (t :: (~>) b (m c)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (>=>@#@$) t) t) t :: m c) infixr 1 Source #

type family ((a :: (~>) b (m c)) <=< (a :: (~>) a (m b))) (a :: a) :: m c where ... infixr 1 Source #

Equations

(a_6989586621681271458 <=< a_6989586621681271460) a_6989586621681271462 = Apply (Apply (Apply (Apply FlipSym0 (>=>@#@$)) a_6989586621681271458) a_6989586621681271460) a_6989586621681271462 

(%<=<) :: forall b m c a (t :: (~>) b (m c)) (t :: (~>) a (m b)) (t :: a). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (<=<@#@$) t) t) t :: m c) infixr 1 Source #

type family Void (a :: f a) :: f () where ... Source #

Equations

Void x = Apply (Apply (<$@#@$) Tuple0Sym0) x 

sVoid :: forall f a (t :: f a). SFunctor f => Sing t -> Sing (Apply VoidSym0 t :: f ()) Source #

type family Join (a :: m (m a)) :: m a where ... Source #

Equations

Join x = Apply (Apply (>>=@#@$) x) IdSym0 

sJoin :: forall m a (t :: m (m a)). SMonad m => Sing t -> Sing (Apply JoinSym0 t :: m a) Source #

type family Msum (a :: t (m a)) :: m a where ... Source #

Equations

Msum a_6989586621680487147 = Apply AsumSym0 a_6989586621680487147 

sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #

type family Mfilter (a :: (~>) a Bool) (a :: m a) :: m a where ... Source #

Equations

Mfilter p ma = Apply (Apply (>>=@#@$) ma) (Apply (Apply Lambda_6989586621681271332Sym0 p) ma) 

sMfilter :: forall a m (t :: (~>) a Bool) (t :: m a). SMonadPlus m => Sing t -> Sing t -> Sing (Apply (Apply MfilterSym0 t) t :: m a) Source #

type family FilterM (a :: (~>) a (m Bool)) (a :: [a]) :: m [a] where ... Source #

Equations

FilterM p a_6989586621681271496 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621681271500Sym0 p) a_6989586621681271496)) (Apply PureSym0 '[])) a_6989586621681271496 

sFilterM :: forall a m (t :: (~>) a (m Bool)) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply FilterMSym0 t) t :: m [a]) Source #

type family MapAndUnzipM (a :: (~>) a (m (b, c))) (a :: [a]) :: m ([b], [c]) where ... Source #

sMapAndUnzipM :: forall a m b c (t :: (~>) a (m (b, c))) (t :: [a]). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply MapAndUnzipMSym0 t) t :: m ([b], [c])) Source #

type family ZipWithM (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m [c] where ... Source #

Equations

ZipWithM f xs ys = Apply SequenceASym0 (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 

sZipWithM :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithMSym0 t) t) t :: m [c]) Source #

type family ZipWithM_ (a :: (~>) a ((~>) b (m c))) (a :: [a]) (a :: [b]) :: m () where ... Source #

Equations

ZipWithM_ f xs ys = Apply SequenceA_Sym0 (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 

sZipWithM_ :: forall a b m c (t :: (~>) a ((~>) b (m c))) (t :: [a]) (t :: [b]). SApplicative m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithM_Sym0 t) t) t :: m ()) Source #

type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ... Source #

Equations

FoldlM f z0 xs = Apply (Apply (Apply (Apply FoldrSym0 (Let6989586621680487212F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #

type family ReplicateM (a :: Nat) (a :: m a) :: m [a] where ... Source #

Equations

ReplicateM cnt0 f = Apply (Let6989586621681271397LoopSym2 cnt0 f) cnt0 

sReplicateM :: forall m a (t :: Nat) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateMSym0 t) t :: m [a]) Source #

type family ReplicateM_ (a :: Nat) (a :: m a) :: m () where ... Source #

Equations

ReplicateM_ cnt0 f = Apply (Let6989586621681271378LoopSym2 cnt0 f) cnt0 

sReplicateM_ :: forall m a (t :: Nat) (t :: m a). SApplicative m => Sing t -> Sing t -> Sing (Apply (Apply ReplicateM_Sym0 t) t :: m ()) Source #

type family Guard (a :: Bool) :: f () where ... Source #

Equations

Guard 'True = Apply PureSym0 Tuple0Sym0 
Guard 'False = EmptySym0 

sGuard :: forall f (t :: Bool). SAlternative f => Sing t -> Sing (Apply GuardSym0 t :: f ()) Source #

type family When (a :: Bool) (a :: f ()) :: f () where ... Source #

Equations

When p s = Case_6989586621679567287 p s p 

sWhen :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply WhenSym0 t) t :: f ()) Source #

type family Unless (a :: Bool) (a :: f ()) :: f () where ... Source #

Equations

Unless p s = Case_6989586621681271369 p s p 

sUnless :: forall f (t :: Bool) (t :: f ()). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply UnlessSym0 t) t :: f ()) Source #

type family LiftM (a :: (~>) a1 r) (a :: m a1) :: m r where ... Source #

Equations

LiftM f m1 = Apply (Apply (>>=@#@$) m1) (Apply (Apply Lambda_6989586621679567274Sym0 f) m1) 

sLiftM :: forall a1 r m (t :: (~>) a1 r) (t :: m a1). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply LiftMSym0 t) t :: m r) Source #

type family LiftM2 (a :: (~>) a1 ((~>) a2 r)) (a :: m a1) (a :: m a2) :: m r where ... Source #

Equations

LiftM2 f m1 m2 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply Lambda_6989586621679567251Sym0 f) m1) m2) 

sLiftM2 :: forall a1 a2 r m (t :: (~>) a1 ((~>) a2 r)) (t :: m a1) (t :: m a2). SMonad m => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftM2Sym0 t) t) t :: m r) Source #

type family LiftM3 (a :: (~>) a1 ((~>) a2 ((~>) a3 r))) (a :: m a1) (a :: m a2) (a :: m a3) :: m r where ... Source #

Equations

LiftM3 f m1 m2 m3 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply (Apply Lambda_6989586621679567212Sym0 f) m1) m2) m3) 

sLiftM3 :: forall a1 a2 a3 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 r))) (t :: m a1) (t :: m a2) (t :: m a3). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftM3Sym0 t) t) t) t :: m r) Source #

type family LiftM4 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) :: m r where ... Source #

Equations

LiftM4 f m1 m2 m3 m4 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679567154Sym0 f) m1) m2) m3) m4) 

sLiftM4 :: forall a1 a2 a3 a4 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 r)))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply LiftM4Sym0 t) t) t) t) t :: m r) Source #

type family LiftM5 (a :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (a :: m a1) (a :: m a2) (a :: m a3) (a :: m a4) (a :: m a5) :: m r where ... Source #

Equations

LiftM5 f m1 m2 m3 m4 m5 = Apply (Apply (>>=@#@$) m1) (Apply (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679567074Sym0 f) m1) m2) m3) m4) m5) 

sLiftM5 :: forall a1 a2 a3 a4 a5 r m (t :: (~>) a1 ((~>) a2 ((~>) a3 ((~>) a4 ((~>) a5 r))))) (t :: m a1) (t :: m a2) (t :: m a3) (t :: m a4) (t :: m a5). SMonad m => Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply (Apply (Apply LiftM5Sym0 t) t) t) t) t) t :: m r) Source #

type family Ap (a :: m ((~>) a b)) (a :: m a) :: m b where ... Source #

Equations

Ap m1 m2 = Apply (Apply (>>=@#@$) m1) (Apply (Apply Lambda_6989586621679567041Sym0 m1) m2) 

sAp :: forall m a b (t :: m ((~>) a b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply ApSym0 t) t :: m b) Source #

type family (a :: (~>) a b) <$!> (a :: m a) :: m b where ... infixl 4 Source #

Equations

f <$!> m = Apply (Apply (>>=@#@$) m) (Apply (Apply Lambda_6989586621681271352Sym0 f) m) 

(%<$!>) :: forall a b m (t :: (~>) a b) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (<$!>@#@$) t) t :: m b) infixl 4 Source #

Defunctionalization symbols

data FmapSym0 :: forall a6989586621679566946 b6989586621679566947 f6989586621679566945. (~>) ((~>) a6989586621679566946 b6989586621679566947) ((~>) (f6989586621679566945 a6989586621679566946) (f6989586621679566945 b6989586621679566947)) Source #

Instances

Instances details
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (FmapSym0 :: TyFun (a6989586621679566946 ~> b6989586621679566947) (f6989586621679566945 a6989586621679566946 ~> f6989586621679566945 b6989586621679566947) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (FmapSym0 :: TyFun (a6989586621679566946 ~> b6989586621679566947) (f6989586621679566945 a6989586621679566946 ~> f6989586621679566945 b6989586621679566947) -> Type) (arg6989586621679567337 :: a6989586621679566946 ~> b6989586621679566947) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (FmapSym0 :: TyFun (a6989586621679566946 ~> b6989586621679566947) (f6989586621679566945 a6989586621679566946 ~> f6989586621679566945 b6989586621679566947) -> Type) (arg6989586621679567337 :: a6989586621679566946 ~> b6989586621679566947) = FmapSym1 arg6989586621679567337 f6989586621679566945 :: TyFun (f6989586621679566945 a6989586621679566946) (f6989586621679566945 b6989586621679566947) -> Type

data FmapSym1 (arg6989586621679567337 :: (~>) a6989586621679566946 b6989586621679566947) :: forall f6989586621679566945. (~>) (f6989586621679566945 a6989586621679566946) (f6989586621679566945 b6989586621679566947) Source #

Instances

Instances details
(SFunctor f, SingI d) => SingI (FmapSym1 d f :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (FmapSym1 d f) Source #

SuppressUnusedWarnings (FmapSym1 arg6989586621679567337 f6989586621679566945 :: TyFun (f6989586621679566945 a6989586621679566946) (f6989586621679566945 b6989586621679566947) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (FmapSym1 arg6989586621679567337 f :: TyFun (f a) (f b) -> Type) (arg6989586621679567338 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (FmapSym1 arg6989586621679567337 f :: TyFun (f a) (f b) -> Type) (arg6989586621679567338 :: f a) = Fmap arg6989586621679567337 arg6989586621679567338

type FmapSym2 (arg6989586621679567337 :: (~>) a6989586621679566946 b6989586621679566947) (arg6989586621679567338 :: f6989586621679566945 a6989586621679566946) = Fmap arg6989586621679567337 arg6989586621679567338 Source #

data (>>=@#@$) :: forall m6989586621679566974 a6989586621679566975 b6989586621679566976. (~>) (m6989586621679566974 a6989586621679566975) ((~>) ((~>) a6989586621679566975 (m6989586621679566974 b6989586621679566976)) (m6989586621679566974 b6989586621679566976)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((>>=@#@$) :: TyFun (m6989586621679566974 a6989586621679566975) ((a6989586621679566975 ~> m6989586621679566974 b6989586621679566976) ~> m6989586621679566974 b6989586621679566976) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((>>=@#@$) :: TyFun (m6989586621679566974 a6989586621679566975) ((a6989586621679566975 ~> m6989586621679566974 b6989586621679566976) ~> m6989586621679566974 b6989586621679566976) -> Type) (arg6989586621679567444 :: m6989586621679566974 a6989586621679566975) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((>>=@#@$) :: TyFun (m6989586621679566974 a6989586621679566975) ((a6989586621679566975 ~> m6989586621679566974 b6989586621679566976) ~> m6989586621679566974 b6989586621679566976) -> Type) (arg6989586621679567444 :: m6989586621679566974 a6989586621679566975) = arg6989586621679567444 >>=@#@$$ b6989586621679566976 :: TyFun (a6989586621679566975 ~> m6989586621679566974 b6989586621679566976) (m6989586621679566974 b6989586621679566976) -> Type

data (>>=@#@$$) (arg6989586621679567444 :: m6989586621679566974 a6989586621679566975) :: forall b6989586621679566976. (~>) ((~>) a6989586621679566975 (m6989586621679566974 b6989586621679566976)) (m6989586621679566974 b6989586621679566976) infixl 1 Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (d >>=@#@$$ b :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d >>=@#@$$ b) Source #

SuppressUnusedWarnings (arg6989586621679567444 >>=@#@$$ b6989586621679566976 :: TyFun (a6989586621679566975 ~> m6989586621679566974 b6989586621679566976) (m6989586621679566974 b6989586621679566976) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567444 >>=@#@$$ b :: TyFun (a ~> m b) (m b) -> Type) (arg6989586621679567445 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567444 >>=@#@$$ b :: TyFun (a ~> m b) (m b) -> Type) (arg6989586621679567445 :: a ~> m b) = arg6989586621679567444 >>= arg6989586621679567445

type (>>=@#@$$$) (arg6989586621679567444 :: m6989586621679566974 a6989586621679566975) (arg6989586621679567445 :: (~>) a6989586621679566975 (m6989586621679566974 b6989586621679566976)) = (>>=) arg6989586621679567444 arg6989586621679567445 Source #

data (>>@#@$) :: forall m6989586621679566974 a6989586621679566977 b6989586621679566978. (~>) (m6989586621679566974 a6989586621679566977) ((~>) (m6989586621679566974 b6989586621679566978) (m6989586621679566974 b6989586621679566978)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((>>@#@$) :: TyFun (m6989586621679566974 a6989586621679566977) (m6989586621679566974 b6989586621679566978 ~> m6989586621679566974 b6989586621679566978) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((>>@#@$) :: TyFun (m6989586621679566974 a6989586621679566977) (m6989586621679566974 b6989586621679566978 ~> m6989586621679566974 b6989586621679566978) -> Type) (arg6989586621679567448 :: m6989586621679566974 a6989586621679566977) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((>>@#@$) :: TyFun (m6989586621679566974 a6989586621679566977) (m6989586621679566974 b6989586621679566978 ~> m6989586621679566974 b6989586621679566978) -> Type) (arg6989586621679567448 :: m6989586621679566974 a6989586621679566977) = arg6989586621679567448 >>@#@$$ b6989586621679566978 :: TyFun (m6989586621679566974 b6989586621679566978) (m6989586621679566974 b6989586621679566978) -> Type

data (>>@#@$$) (arg6989586621679567448 :: m6989586621679566974 a6989586621679566977) :: forall b6989586621679566978. (~>) (m6989586621679566974 b6989586621679566978) (m6989586621679566974 b6989586621679566978) infixl 1 Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (d >>@#@$$ b :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (d >>@#@$$ b) Source #

SuppressUnusedWarnings (arg6989586621679567448 >>@#@$$ b6989586621679566978 :: TyFun (m6989586621679566974 b6989586621679566978) (m6989586621679566974 b6989586621679566978) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567448 >>@#@$$ b :: TyFun (m b) (m b) -> Type) (arg6989586621679567449 :: m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (arg6989586621679567448 >>@#@$$ b :: TyFun (m b) (m b) -> Type) (arg6989586621679567449 :: m b) = arg6989586621679567448 >> arg6989586621679567449

type (>>@#@$$$) (arg6989586621679567448 :: m6989586621679566974 a6989586621679566977) (arg6989586621679567449 :: m6989586621679566974 b6989586621679566978) = (>>) arg6989586621679567448 arg6989586621679567449 Source #

data ReturnSym0 :: forall a6989586621679566979 m6989586621679566974. (~>) a6989586621679566979 (m6989586621679566974 a6989586621679566979) Source #

Instances

Instances details
SMonad m => SingI (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (ReturnSym0 :: TyFun a6989586621679566979 (m6989586621679566974 a6989586621679566979) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (ReturnSym0 :: TyFun a (m6989586621679566974 a) -> Type) (arg6989586621679567452 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (ReturnSym0 :: TyFun a (m6989586621679566974 a) -> Type) (arg6989586621679567452 :: a) = Return arg6989586621679567452 :: m6989586621679566974 a

type ReturnSym1 (arg6989586621679567452 :: a6989586621679566979) = Return arg6989586621679567452 Source #

data FailSym0 :: forall m6989586621679735037 a6989586621679735038. (~>) [Char] (m6989586621679735037 a6989586621679735038) Source #

Instances

Instances details
SMonadFail m => SingI (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

SuppressUnusedWarnings (FailSym0 :: TyFun [Char] (m6989586621679735037 a6989586621679735038) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

type Apply (FailSym0 :: TyFun [Char] (m6989586621679735037 a6989586621679735038) -> Type) (arg6989586621679735057 :: [Char]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Fail

type Apply (FailSym0 :: TyFun [Char] (m6989586621679735037 a6989586621679735038) -> Type) (arg6989586621679735057 :: [Char]) = Fail arg6989586621679735057 :: m6989586621679735037 a6989586621679735038

type FailSym1 (arg6989586621679735057 :: [Char]) = Fail arg6989586621679735057 Source #

data MplusSym0 :: forall m6989586621679567028 a6989586621679567030. (~>) (m6989586621679567028 a6989586621679567030) ((~>) (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030)) Source #

Instances

Instances details
SMonadPlus m => SingI (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (MplusSym0 :: TyFun (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030 ~> m6989586621679567028 a6989586621679567030) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (MplusSym0 :: TyFun (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030 ~> m6989586621679567028 a6989586621679567030) -> Type) (arg6989586621679567489 :: m6989586621679567028 a6989586621679567030) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (MplusSym0 :: TyFun (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030 ~> m6989586621679567028 a6989586621679567030) -> Type) (arg6989586621679567489 :: m6989586621679567028 a6989586621679567030) = MplusSym1 arg6989586621679567489

data MplusSym1 (arg6989586621679567489 :: m6989586621679567028 a6989586621679567030) :: (~>) (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030) Source #

Instances

Instances details
(SMonadPlus m, SingI d) => SingI (MplusSym1 d :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (MplusSym1 d) Source #

SuppressUnusedWarnings (MplusSym1 arg6989586621679567489 :: TyFun (m6989586621679567028 a6989586621679567030) (m6989586621679567028 a6989586621679567030) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (MplusSym1 arg6989586621679567489 :: TyFun (m a) (m a) -> Type) (arg6989586621679567490 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (MplusSym1 arg6989586621679567489 :: TyFun (m a) (m a) -> Type) (arg6989586621679567490 :: m a) = Mplus arg6989586621679567489 arg6989586621679567490

type MplusSym2 (arg6989586621679567489 :: m6989586621679567028 a6989586621679567030) (arg6989586621679567490 :: m6989586621679567028 a6989586621679567030) = Mplus arg6989586621679567489 arg6989586621679567490 Source #

data MapMSym0 :: forall a6989586621680794826 m6989586621680794825 b6989586621680794827 t6989586621680794819. (~>) ((~>) a6989586621680794826 (m6989586621680794825 b6989586621680794827)) ((~>) (t6989586621680794819 a6989586621680794826) (m6989586621680794825 (t6989586621680794819 b6989586621680794827))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

SuppressUnusedWarnings (MapMSym0 :: TyFun (a6989586621680794826 ~> m6989586621680794825 b6989586621680794827) (t6989586621680794819 a6989586621680794826 ~> m6989586621680794825 (t6989586621680794819 b6989586621680794827)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (MapMSym0 :: TyFun (a6989586621680794826 ~> m6989586621680794825 b6989586621680794827) (t6989586621680794819 a6989586621680794826 ~> m6989586621680794825 (t6989586621680794819 b6989586621680794827)) -> Type) (arg6989586621680794837 :: a6989586621680794826 ~> m6989586621680794825 b6989586621680794827) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (MapMSym0 :: TyFun (a6989586621680794826 ~> m6989586621680794825 b6989586621680794827) (t6989586621680794819 a6989586621680794826 ~> m6989586621680794825 (t6989586621680794819 b6989586621680794827)) -> Type) (arg6989586621680794837 :: a6989586621680794826 ~> m6989586621680794825 b6989586621680794827) = MapMSym1 arg6989586621680794837 t6989586621680794819 :: TyFun (t6989586621680794819 a6989586621680794826) (m6989586621680794825 (t6989586621680794819 b6989586621680794827)) -> Type

data MapMSym1 (arg6989586621680794837 :: (~>) a6989586621680794826 (m6989586621680794825 b6989586621680794827)) :: forall t6989586621680794819. (~>) (t6989586621680794819 a6989586621680794826) (m6989586621680794825 (t6989586621680794819 b6989586621680794827)) Source #

Instances

Instances details
(STraversable t, SMonad m, SingI d) => SingI (MapMSym1 d t :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

Methods

sing :: Sing (MapMSym1 d t) Source #

SuppressUnusedWarnings (MapMSym1 arg6989586621680794837 t6989586621680794819 :: TyFun (t6989586621680794819 a6989586621680794826) (m6989586621680794825 (t6989586621680794819 b6989586621680794827)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (MapMSym1 arg6989586621680794837 t :: TyFun (t a) (m (t b)) -> Type) (arg6989586621680794838 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (MapMSym1 arg6989586621680794837 t :: TyFun (t a) (m (t b)) -> Type) (arg6989586621680794838 :: t a) = MapM arg6989586621680794837 arg6989586621680794838

type MapMSym2 (arg6989586621680794837 :: (~>) a6989586621680794826 (m6989586621680794825 b6989586621680794827)) (arg6989586621680794838 :: t6989586621680794819 a6989586621680794826) = MapM arg6989586621680794837 arg6989586621680794838 Source #

data MapM_Sym0 :: forall a6989586621680486573 m6989586621680486572 b6989586621680486574 t6989586621680486571. (~>) ((~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) ((~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) (t6989586621680486571 a6989586621680486573 ~> m6989586621680486572 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) (t6989586621680486571 a6989586621680486573 ~> m6989586621680486572 ()) -> Type) (a6989586621680487177 :: a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) (t6989586621680486571 a6989586621680486573 ~> m6989586621680486572 ()) -> Type) (a6989586621680487177 :: a6989586621680486573 ~> m6989586621680486572 b6989586621680486574) = MapM_Sym1 a6989586621680487177 t6989586621680486571 :: TyFun (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()) -> Type

data MapM_Sym1 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) :: forall t6989586621680486571. (~>) (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d t :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MapM_Sym1 d t) Source #

SuppressUnusedWarnings (MapM_Sym1 a6989586621680487177 t6989586621680486571 :: TyFun (t6989586621680486571 a6989586621680486573) (m6989586621680486572 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680487177 t :: TyFun (t a) (m ()) -> Type) (a6989586621680487178 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680487177 t :: TyFun (t a) (m ()) -> Type) (a6989586621680487178 :: t a) = MapM_ a6989586621680487177 a6989586621680487178

type MapM_Sym2 (a6989586621680487177 :: (~>) a6989586621680486573 (m6989586621680486572 b6989586621680486574)) (a6989586621680487178 :: t6989586621680486571 a6989586621680486573) = MapM_ a6989586621680487177 a6989586621680487178 Source #

data ForMSym0 :: forall t6989586621680800356 a6989586621680800358 m6989586621680800357 b6989586621680800359. (~>) (t6989586621680800356 a6989586621680800358) ((~>) ((~>) a6989586621680800358 (m6989586621680800357 b6989586621680800359)) (m6989586621680800357 (t6989586621680800356 b6989586621680800359))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

SuppressUnusedWarnings (ForMSym0 :: TyFun (t6989586621680800356 a6989586621680800358) ((a6989586621680800358 ~> m6989586621680800357 b6989586621680800359) ~> m6989586621680800357 (t6989586621680800356 b6989586621680800359)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (ForMSym0 :: TyFun (t6989586621680800356 a6989586621680800358) ((a6989586621680800358 ~> m6989586621680800357 b6989586621680800359) ~> m6989586621680800357 (t6989586621680800356 b6989586621680800359)) -> Type) (a6989586621680800877 :: t6989586621680800356 a6989586621680800358) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (ForMSym0 :: TyFun (t6989586621680800356 a6989586621680800358) ((a6989586621680800358 ~> m6989586621680800357 b6989586621680800359) ~> m6989586621680800357 (t6989586621680800356 b6989586621680800359)) -> Type) (a6989586621680800877 :: t6989586621680800356 a6989586621680800358) = ForMSym1 a6989586621680800877 m6989586621680800357 b6989586621680800359 :: TyFun (a6989586621680800358 ~> m6989586621680800357 b6989586621680800359) (m6989586621680800357 (t6989586621680800356 b6989586621680800359)) -> Type

data ForMSym1 (a6989586621680800877 :: t6989586621680800356 a6989586621680800358) :: forall m6989586621680800357 b6989586621680800359. (~>) ((~>) a6989586621680800358 (m6989586621680800357 b6989586621680800359)) (m6989586621680800357 (t6989586621680800356 b6989586621680800359)) Source #

Instances

Instances details
(STraversable t, SMonad m, SingI d) => SingI (ForMSym1 d m b :: TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

Methods

sing :: Sing (ForMSym1 d m b) Source #

SuppressUnusedWarnings (ForMSym1 a6989586621680800877 m6989586621680800357 b6989586621680800359 :: TyFun (a6989586621680800358 ~> m6989586621680800357 b6989586621680800359) (m6989586621680800357 (t6989586621680800356 b6989586621680800359)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (ForMSym1 a6989586621680800877 m b :: TyFun (a ~> m b) (m (t b)) -> Type) (a6989586621680800878 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (ForMSym1 a6989586621680800877 m b :: TyFun (a ~> m b) (m (t b)) -> Type) (a6989586621680800878 :: a ~> m b) = ForM a6989586621680800877 a6989586621680800878

type ForMSym2 (a6989586621680800877 :: t6989586621680800356 a6989586621680800358) (a6989586621680800878 :: (~>) a6989586621680800358 (m6989586621680800357 b6989586621680800359)) = ForM a6989586621680800877 a6989586621680800878 Source #

data SequenceSym0 :: forall t6989586621680794819 m6989586621680794828 a6989586621680794829. (~>) (t6989586621680794819 (m6989586621680794828 a6989586621680794829)) (m6989586621680794828 (t6989586621680794819 a6989586621680794829)) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

SuppressUnusedWarnings (SequenceSym0 :: TyFun (t6989586621680794819 (m6989586621680794828 a6989586621680794829)) (m6989586621680794828 (t6989586621680794819 a6989586621680794829)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (arg6989586621680794841 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Traversable

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (arg6989586621680794841 :: t (m a)) = Sequence arg6989586621680794841

type SequenceSym1 (arg6989586621680794841 :: t6989586621680794819 (m6989586621680794828 a6989586621680794829)) = Sequence arg6989586621680794841 Source #

data Sequence_Sym0 :: forall t6989586621680486561 m6989586621680486562 a6989586621680486563. (~>) (t6989586621680486561 (m6989586621680486562 a6989586621680486563)) (m6989586621680486562 ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t6989586621680486561 (m6989586621680486562 a6989586621680486563)) (m6989586621680486562 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680487159 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680487159 :: t (m a)) = Sequence_ a6989586621680487159

type Sequence_Sym1 (a6989586621680487159 :: t6989586621680486561 (m6989586621680486562 a6989586621680486563)) = Sequence_ a6989586621680487159 Source #

data (=<<@#@$) :: forall a6989586621679566898 m6989586621679566897 b6989586621679566899. (~>) ((~>) a6989586621679566898 (m6989586621679566897 b6989586621679566899)) ((~>) (m6989586621679566897 a6989586621679566898) (m6989586621679566897 b6989586621679566899)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings ((=<<@#@$) :: TyFun (a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) (m6989586621679566897 a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((=<<@#@$) :: TyFun (a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) (m6989586621679566897 a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) -> Type) (a6989586621679567290 :: a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((=<<@#@$) :: TyFun (a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) (m6989586621679566897 a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) -> Type) (a6989586621679567290 :: a6989586621679566898 ~> m6989586621679566897 b6989586621679566899) = (=<<@#@$$) a6989586621679567290

data (=<<@#@$$) (a6989586621679567290 :: (~>) a6989586621679566898 (m6989586621679566897 b6989586621679566899)) :: (~>) (m6989586621679566897 a6989586621679566898) (m6989586621679566897 b6989586621679566899) infixr 1 Source #

Instances

Instances details
(SMonad m, SingI d) => SingI ((=<<@#@$$) d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ((=<<@#@$$) d) Source #

SuppressUnusedWarnings ((=<<@#@$$) a6989586621679567290 :: TyFun (m6989586621679566897 a6989586621679566898) (m6989586621679566897 b6989586621679566899) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((=<<@#@$$) a6989586621679567290 :: TyFun (m a) (m b) -> Type) (a6989586621679567291 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply ((=<<@#@$$) a6989586621679567290 :: TyFun (m a) (m b) -> Type) (a6989586621679567291 :: m a) = a6989586621679567290 =<< a6989586621679567291

type (=<<@#@$$$) (a6989586621679567290 :: (~>) a6989586621679566898 (m6989586621679566897 b6989586621679566899)) (a6989586621679567291 :: m6989586621679566897 a6989586621679566898) = (=<<) a6989586621679567290 a6989586621679567291 Source #

data (>=>@#@$) :: forall a6989586621681271041 m6989586621681271040 b6989586621681271042 c6989586621681271043. (~>) ((~>) a6989586621681271041 (m6989586621681271040 b6989586621681271042)) ((~>) ((~>) b6989586621681271042 (m6989586621681271040 c6989586621681271043)) ((~>) a6989586621681271041 (m6989586621681271040 c6989586621681271043))) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings ((>=>@#@$) :: TyFun (a6989586621681271041 ~> m6989586621681271040 b6989586621681271042) ((b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) ~> (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply ((>=>@#@$) :: TyFun (a6989586621681271041 ~> m6989586621681271040 b6989586621681271042) ((b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) ~> (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043)) -> Type) (a6989586621681271473 :: a6989586621681271041 ~> m6989586621681271040 b6989586621681271042) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply ((>=>@#@$) :: TyFun (a6989586621681271041 ~> m6989586621681271040 b6989586621681271042) ((b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) ~> (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043)) -> Type) (a6989586621681271473 :: a6989586621681271041 ~> m6989586621681271040 b6989586621681271042) = a6989586621681271473 >=>@#@$$ c6989586621681271043 :: TyFun (b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043) -> Type

data (>=>@#@$$) (a6989586621681271473 :: (~>) a6989586621681271041 (m6989586621681271040 b6989586621681271042)) :: forall c6989586621681271043. (~>) ((~>) b6989586621681271042 (m6989586621681271040 c6989586621681271043)) ((~>) a6989586621681271041 (m6989586621681271040 c6989586621681271043)) infixr 1 Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (d >=>@#@$$ c :: TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (d >=>@#@$$ c) Source #

SuppressUnusedWarnings (a6989586621681271473 >=>@#@$$ c6989586621681271043 :: TyFun (b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271473 >=>@#@$$ c6989586621681271043 :: TyFun (b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043) -> Type) (a6989586621681271474 :: b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271473 >=>@#@$$ c6989586621681271043 :: TyFun (b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) (a6989586621681271041 ~> m6989586621681271040 c6989586621681271043) -> Type) (a6989586621681271474 :: b6989586621681271042 ~> m6989586621681271040 c6989586621681271043) = a6989586621681271473 >=>@#@$$$ a6989586621681271474

data (a6989586621681271473 :: (~>) a6989586621681271041 (m6989586621681271040 b6989586621681271042)) >=>@#@$$$ (a6989586621681271474 :: (~>) b6989586621681271042 (m6989586621681271040 c6989586621681271043)) :: (~>) a6989586621681271041 (m6989586621681271040 c6989586621681271043) infixr 1 Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI (d1 >=>@#@$$$ d2 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (d1 >=>@#@$$$ d2) Source #

SuppressUnusedWarnings (a6989586621681271474 >=>@#@$$$ a6989586621681271473 :: TyFun a6989586621681271041 (m6989586621681271040 c6989586621681271043) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271474 >=>@#@$$$ a6989586621681271473 :: TyFun a (m c) -> Type) (a6989586621681271475 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271474 >=>@#@$$$ a6989586621681271473 :: TyFun a (m c) -> Type) (a6989586621681271475 :: a) = (a6989586621681271474 >=> a6989586621681271473) a6989586621681271475

data (<=<@#@$) :: forall b6989586621681271037 m6989586621681271036 c6989586621681271038 a6989586621681271039. (~>) ((~>) b6989586621681271037 (m6989586621681271036 c6989586621681271038)) ((~>) ((~>) a6989586621681271039 (m6989586621681271036 b6989586621681271037)) ((~>) a6989586621681271039 (m6989586621681271036 c6989586621681271038))) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings ((<=<@#@$) :: TyFun (b6989586621681271037 ~> m6989586621681271036 c6989586621681271038) ((a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) ~> (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply ((<=<@#@$) :: TyFun (b6989586621681271037 ~> m6989586621681271036 c6989586621681271038) ((a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) ~> (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038)) -> Type) (a6989586621681271464 :: b6989586621681271037 ~> m6989586621681271036 c6989586621681271038) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply ((<=<@#@$) :: TyFun (b6989586621681271037 ~> m6989586621681271036 c6989586621681271038) ((a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) ~> (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038)) -> Type) (a6989586621681271464 :: b6989586621681271037 ~> m6989586621681271036 c6989586621681271038) = a6989586621681271464 <=<@#@$$ a6989586621681271039 :: TyFun (a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038) -> Type

data (<=<@#@$$) (a6989586621681271464 :: (~>) b6989586621681271037 (m6989586621681271036 c6989586621681271038)) :: forall a6989586621681271039. (~>) ((~>) a6989586621681271039 (m6989586621681271036 b6989586621681271037)) ((~>) a6989586621681271039 (m6989586621681271036 c6989586621681271038)) infixr 1 Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (d <=<@#@$$ a :: TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (d <=<@#@$$ a) Source #

SuppressUnusedWarnings (a6989586621681271464 <=<@#@$$ a6989586621681271039 :: TyFun (a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271464 <=<@#@$$ a6989586621681271039 :: TyFun (a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038) -> Type) (a6989586621681271465 :: a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271464 <=<@#@$$ a6989586621681271039 :: TyFun (a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) (a6989586621681271039 ~> m6989586621681271036 c6989586621681271038) -> Type) (a6989586621681271465 :: a6989586621681271039 ~> m6989586621681271036 b6989586621681271037) = a6989586621681271464 <=<@#@$$$ a6989586621681271465

data (a6989586621681271464 :: (~>) b6989586621681271037 (m6989586621681271036 c6989586621681271038)) <=<@#@$$$ (a6989586621681271465 :: (~>) a6989586621681271039 (m6989586621681271036 b6989586621681271037)) :: (~>) a6989586621681271039 (m6989586621681271036 c6989586621681271038) infixr 1 Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI (d1 <=<@#@$$$ d2 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (d1 <=<@#@$$$ d2) Source #

SuppressUnusedWarnings (a6989586621681271465 <=<@#@$$$ a6989586621681271464 :: TyFun a6989586621681271039 (m6989586621681271036 c6989586621681271038) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271465 <=<@#@$$$ a6989586621681271464 :: TyFun a (m c) -> Type) (a6989586621681271466 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271465 <=<@#@$$$ a6989586621681271464 :: TyFun a (m c) -> Type) (a6989586621681271466 :: a) = (a6989586621681271465 <=< a6989586621681271464) a6989586621681271466

data VoidSym0 :: forall f6989586621679737113 a6989586621679737114. (~>) (f6989586621679737113 a6989586621679737114) (f6989586621679737113 ()) Source #

Instances

Instances details
SFunctor f => SingI (VoidSym0 :: TyFun (f a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

SuppressUnusedWarnings (VoidSym0 :: TyFun (f6989586621679737113 a6989586621679737114) (f6989586621679737113 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply (VoidSym0 :: TyFun (f a) (f ()) -> Type) (a6989586621679737180 :: f a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Functor

type Apply (VoidSym0 :: TyFun (f a) (f ()) -> Type) (a6989586621679737180 :: f a) = Void a6989586621679737180

type VoidSym1 (a6989586621679737180 :: f6989586621679737113 a6989586621679737114) = Void a6989586621679737180 Source #

data JoinSym0 :: forall m6989586621679566900 a6989586621679566901. (~>) (m6989586621679566900 (m6989586621679566900 a6989586621679566901)) (m6989586621679566900 a6989586621679566901) Source #

Instances

Instances details
SMonad m => SingI (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (JoinSym0 :: TyFun (m6989586621679566900 (m6989586621679566900 a6989586621679566901)) (m6989586621679566900 a6989586621679566901) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) (a6989586621679567296 :: m (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) (a6989586621679567296 :: m (m a)) = Join a6989586621679567296

type JoinSym1 (a6989586621679567296 :: m6989586621679566900 (m6989586621679566900 a6989586621679566901)) = Join a6989586621679567296 Source #

data MsumSym0 :: forall t6989586621680486555 m6989586621680486556 a6989586621680486557. (~>) (t6989586621680486555 (m6989586621680486556 a6989586621680486557)) (m6989586621680486556 a6989586621680486557) Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MsumSym0 :: TyFun (t6989586621680486555 (m6989586621680486556 a6989586621680486557)) (m6989586621680486556 a6989586621680486557) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680487149 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680487149 :: t (m a)) = Msum a6989586621680487149

type MsumSym1 (a6989586621680487149 :: t6989586621680486555 (m6989586621680486556 a6989586621680486557)) = Msum a6989586621680487149 Source #

data MfilterSym0 :: forall a6989586621681271007 m6989586621681271006. (~>) ((~>) a6989586621681271007 Bool) ((~>) (m6989586621681271006 a6989586621681271007) (m6989586621681271006 a6989586621681271007)) Source #

Instances

Instances details
SMonadPlus m => SingI (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (MfilterSym0 :: TyFun (a6989586621681271007 ~> Bool) (m6989586621681271006 a6989586621681271007 ~> m6989586621681271006 a6989586621681271007) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MfilterSym0 :: TyFun (a6989586621681271007 ~> Bool) (m6989586621681271006 a6989586621681271007 ~> m6989586621681271006 a6989586621681271007) -> Type) (a6989586621681271326 :: a6989586621681271007 ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MfilterSym0 :: TyFun (a6989586621681271007 ~> Bool) (m6989586621681271006 a6989586621681271007 ~> m6989586621681271006 a6989586621681271007) -> Type) (a6989586621681271326 :: a6989586621681271007 ~> Bool) = MfilterSym1 a6989586621681271326 m6989586621681271006 :: TyFun (m6989586621681271006 a6989586621681271007) (m6989586621681271006 a6989586621681271007) -> Type

data MfilterSym1 (a6989586621681271326 :: (~>) a6989586621681271007 Bool) :: forall m6989586621681271006. (~>) (m6989586621681271006 a6989586621681271007) (m6989586621681271006 a6989586621681271007) Source #

Instances

Instances details
(SMonadPlus m, SingI d) => SingI (MfilterSym1 d m :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (MfilterSym1 d m) Source #

SuppressUnusedWarnings (MfilterSym1 a6989586621681271326 m6989586621681271006 :: TyFun (m6989586621681271006 a6989586621681271007) (m6989586621681271006 a6989586621681271007) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MfilterSym1 a6989586621681271326 m :: TyFun (m a) (m a) -> Type) (a6989586621681271327 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MfilterSym1 a6989586621681271326 m :: TyFun (m a) (m a) -> Type) (a6989586621681271327 :: m a) = Mfilter a6989586621681271326 a6989586621681271327

type MfilterSym2 (a6989586621681271326 :: (~>) a6989586621681271007 Bool) (a6989586621681271327 :: m6989586621681271006 a6989586621681271007) = Mfilter a6989586621681271326 a6989586621681271327 Source #

data FilterMSym0 :: forall a6989586621681271045 m6989586621681271044. (~>) ((~>) a6989586621681271045 (m6989586621681271044 Bool)) ((~>) [a6989586621681271045] (m6989586621681271044 [a6989586621681271045])) Source #

Instances

Instances details
SApplicative m => SingI (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (FilterMSym0 :: TyFun (a6989586621681271045 ~> m6989586621681271044 Bool) ([a6989586621681271045] ~> m6989586621681271044 [a6989586621681271045]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (FilterMSym0 :: TyFun (a6989586621681271045 ~> m6989586621681271044 Bool) ([a6989586621681271045] ~> m6989586621681271044 [a6989586621681271045]) -> Type) (a6989586621681271492 :: a6989586621681271045 ~> m6989586621681271044 Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (FilterMSym0 :: TyFun (a6989586621681271045 ~> m6989586621681271044 Bool) ([a6989586621681271045] ~> m6989586621681271044 [a6989586621681271045]) -> Type) (a6989586621681271492 :: a6989586621681271045 ~> m6989586621681271044 Bool) = FilterMSym1 a6989586621681271492

data FilterMSym1 (a6989586621681271492 :: (~>) a6989586621681271045 (m6989586621681271044 Bool)) :: (~>) [a6989586621681271045] (m6989586621681271044 [a6989586621681271045]) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI (FilterMSym1 d :: TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (FilterMSym1 d) Source #

SuppressUnusedWarnings (FilterMSym1 a6989586621681271492 :: TyFun [a6989586621681271045] (m6989586621681271044 [a6989586621681271045]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (FilterMSym1 a6989586621681271492 :: TyFun [a] (m [a]) -> Type) (a6989586621681271493 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (FilterMSym1 a6989586621681271492 :: TyFun [a] (m [a]) -> Type) (a6989586621681271493 :: [a]) = FilterM a6989586621681271492 a6989586621681271493

type FilterMSym2 (a6989586621681271492 :: (~>) a6989586621681271045 (m6989586621681271044 Bool)) (a6989586621681271493 :: [a6989586621681271045]) = FilterM a6989586621681271492 a6989586621681271493 Source #

data MapAndUnzipMSym0 :: forall a6989586621681271033 m6989586621681271032 b6989586621681271034 c6989586621681271035. (~>) ((~>) a6989586621681271033 (m6989586621681271032 (b6989586621681271034, c6989586621681271035))) ((~>) [a6989586621681271033] (m6989586621681271032 ([b6989586621681271034], [c6989586621681271035]))) Source #

Instances

Instances details
SApplicative m => SingI (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (MapAndUnzipMSym0 :: TyFun (a6989586621681271033 ~> m6989586621681271032 (b6989586621681271034, c6989586621681271035)) ([a6989586621681271033] ~> m6989586621681271032 ([b6989586621681271034], [c6989586621681271035])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MapAndUnzipMSym0 :: TyFun (a6989586621681271033 ~> m6989586621681271032 (b6989586621681271034, c6989586621681271035)) ([a6989586621681271033] ~> m6989586621681271032 ([b6989586621681271034], [c6989586621681271035])) -> Type) (a6989586621681271452 :: a6989586621681271033 ~> m6989586621681271032 (b6989586621681271034, c6989586621681271035)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MapAndUnzipMSym0 :: TyFun (a6989586621681271033 ~> m6989586621681271032 (b6989586621681271034, c6989586621681271035)) ([a6989586621681271033] ~> m6989586621681271032 ([b6989586621681271034], [c6989586621681271035])) -> Type) (a6989586621681271452 :: a6989586621681271033 ~> m6989586621681271032 (b6989586621681271034, c6989586621681271035)) = MapAndUnzipMSym1 a6989586621681271452

data MapAndUnzipMSym1 (a6989586621681271452 :: (~>) a6989586621681271033 (m6989586621681271032 (b6989586621681271034, c6989586621681271035))) :: (~>) [a6989586621681271033] (m6989586621681271032 ([b6989586621681271034], [c6989586621681271035])) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI (MapAndUnzipMSym1 d :: TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (MapAndUnzipMSym1 a6989586621681271452 :: TyFun [a6989586621681271033] (m6989586621681271032 ([b6989586621681271034], [c6989586621681271035])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MapAndUnzipMSym1 a6989586621681271452 :: TyFun [a] (m ([b], [c])) -> Type) (a6989586621681271453 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (MapAndUnzipMSym1 a6989586621681271452 :: TyFun [a] (m ([b], [c])) -> Type) (a6989586621681271453 :: [a]) = MapAndUnzipM a6989586621681271452 a6989586621681271453

type MapAndUnzipMSym2 (a6989586621681271452 :: (~>) a6989586621681271033 (m6989586621681271032 (b6989586621681271034, c6989586621681271035))) (a6989586621681271453 :: [a6989586621681271033]) = MapAndUnzipM a6989586621681271452 a6989586621681271453 Source #

data ZipWithMSym0 :: forall a6989586621681271029 b6989586621681271030 m6989586621681271028 c6989586621681271031. (~>) ((~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) ((~>) [a6989586621681271029] ((~>) [b6989586621681271030] (m6989586621681271028 [c6989586621681271031]))) Source #

Instances

Instances details
SApplicative m => SingI (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (ZipWithMSym0 :: TyFun (a6989586621681271029 ~> (b6989586621681271030 ~> m6989586621681271028 c6989586621681271031)) ([a6989586621681271029] ~> ([b6989586621681271030] ~> m6989586621681271028 [c6989586621681271031])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithMSym0 :: TyFun (a6989586621681271029 ~> (b6989586621681271030 ~> m6989586621681271028 c6989586621681271031)) ([a6989586621681271029] ~> ([b6989586621681271030] ~> m6989586621681271028 [c6989586621681271031])) -> Type) (a6989586621681271443 :: a6989586621681271029 ~> (b6989586621681271030 ~> m6989586621681271028 c6989586621681271031)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithMSym0 :: TyFun (a6989586621681271029 ~> (b6989586621681271030 ~> m6989586621681271028 c6989586621681271031)) ([a6989586621681271029] ~> ([b6989586621681271030] ~> m6989586621681271028 [c6989586621681271031])) -> Type) (a6989586621681271443 :: a6989586621681271029 ~> (b6989586621681271030 ~> m6989586621681271028 c6989586621681271031)) = ZipWithMSym1 a6989586621681271443

data ZipWithMSym1 (a6989586621681271443 :: (~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) :: (~>) [a6989586621681271029] ((~>) [b6989586621681271030] (m6989586621681271028 [c6989586621681271031])) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI (ZipWithMSym1 d :: TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (ZipWithMSym1 d) Source #

SuppressUnusedWarnings (ZipWithMSym1 a6989586621681271443 :: TyFun [a6989586621681271029] ([b6989586621681271030] ~> m6989586621681271028 [c6989586621681271031]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithMSym1 a6989586621681271443 :: TyFun [a6989586621681271029] ([b6989586621681271030] ~> m6989586621681271028 [c6989586621681271031]) -> Type) (a6989586621681271444 :: [a6989586621681271029]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithMSym1 a6989586621681271443 :: TyFun [a6989586621681271029] ([b6989586621681271030] ~> m6989586621681271028 [c6989586621681271031]) -> Type) (a6989586621681271444 :: [a6989586621681271029]) = ZipWithMSym2 a6989586621681271443 a6989586621681271444

data ZipWithMSym2 (a6989586621681271443 :: (~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) (a6989586621681271444 :: [a6989586621681271029]) :: (~>) [b6989586621681271030] (m6989586621681271028 [c6989586621681271031]) Source #

Instances

Instances details
(SApplicative m, SingI d1, SingI d2) => SingI (ZipWithMSym2 d1 d2 :: TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (ZipWithMSym2 d1 d2) Source #

SuppressUnusedWarnings (ZipWithMSym2 a6989586621681271444 a6989586621681271443 :: TyFun [b6989586621681271030] (m6989586621681271028 [c6989586621681271031]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithMSym2 a6989586621681271444 a6989586621681271443 :: TyFun [b] (m [c]) -> Type) (a6989586621681271445 :: [b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithMSym2 a6989586621681271444 a6989586621681271443 :: TyFun [b] (m [c]) -> Type) (a6989586621681271445 :: [b]) = ZipWithM a6989586621681271444 a6989586621681271443 a6989586621681271445

type ZipWithMSym3 (a6989586621681271443 :: (~>) a6989586621681271029 ((~>) b6989586621681271030 (m6989586621681271028 c6989586621681271031))) (a6989586621681271444 :: [a6989586621681271029]) (a6989586621681271445 :: [b6989586621681271030]) = ZipWithM a6989586621681271443 a6989586621681271444 a6989586621681271445 Source #

data ZipWithM_Sym0 :: forall a6989586621681271025 b6989586621681271026 m6989586621681271024 c6989586621681271027. (~>) ((~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) ((~>) [a6989586621681271025] ((~>) [b6989586621681271026] (m6989586621681271024 ()))) Source #

Instances

Instances details
SApplicative m => SingI (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (ZipWithM_Sym0 :: TyFun (a6989586621681271025 ~> (b6989586621681271026 ~> m6989586621681271024 c6989586621681271027)) ([a6989586621681271025] ~> ([b6989586621681271026] ~> m6989586621681271024 ())) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithM_Sym0 :: TyFun (a6989586621681271025 ~> (b6989586621681271026 ~> m6989586621681271024 c6989586621681271027)) ([a6989586621681271025] ~> ([b6989586621681271026] ~> m6989586621681271024 ())) -> Type) (a6989586621681271434 :: a6989586621681271025 ~> (b6989586621681271026 ~> m6989586621681271024 c6989586621681271027)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithM_Sym0 :: TyFun (a6989586621681271025 ~> (b6989586621681271026 ~> m6989586621681271024 c6989586621681271027)) ([a6989586621681271025] ~> ([b6989586621681271026] ~> m6989586621681271024 ())) -> Type) (a6989586621681271434 :: a6989586621681271025 ~> (b6989586621681271026 ~> m6989586621681271024 c6989586621681271027)) = ZipWithM_Sym1 a6989586621681271434

data ZipWithM_Sym1 (a6989586621681271434 :: (~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) :: (~>) [a6989586621681271025] ((~>) [b6989586621681271026] (m6989586621681271024 ())) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI (ZipWithM_Sym1 d :: TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (ZipWithM_Sym1 a6989586621681271434 :: TyFun [a6989586621681271025] ([b6989586621681271026] ~> m6989586621681271024 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithM_Sym1 a6989586621681271434 :: TyFun [a6989586621681271025] ([b6989586621681271026] ~> m6989586621681271024 ()) -> Type) (a6989586621681271435 :: [a6989586621681271025]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithM_Sym1 a6989586621681271434 :: TyFun [a6989586621681271025] ([b6989586621681271026] ~> m6989586621681271024 ()) -> Type) (a6989586621681271435 :: [a6989586621681271025]) = ZipWithM_Sym2 a6989586621681271434 a6989586621681271435

data ZipWithM_Sym2 (a6989586621681271434 :: (~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) (a6989586621681271435 :: [a6989586621681271025]) :: (~>) [b6989586621681271026] (m6989586621681271024 ()) Source #

Instances

Instances details
(SApplicative m, SingI d1, SingI d2) => SingI (ZipWithM_Sym2 d1 d2 :: TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (ZipWithM_Sym2 d1 d2) Source #

SuppressUnusedWarnings (ZipWithM_Sym2 a6989586621681271435 a6989586621681271434 :: TyFun [b6989586621681271026] (m6989586621681271024 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithM_Sym2 a6989586621681271435 a6989586621681271434 :: TyFun [b] (m ()) -> Type) (a6989586621681271436 :: [b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ZipWithM_Sym2 a6989586621681271435 a6989586621681271434 :: TyFun [b] (m ()) -> Type) (a6989586621681271436 :: [b]) = ZipWithM_ a6989586621681271435 a6989586621681271434 a6989586621681271436

type ZipWithM_Sym3 (a6989586621681271434 :: (~>) a6989586621681271025 ((~>) b6989586621681271026 (m6989586621681271024 c6989586621681271027))) (a6989586621681271435 :: [a6989586621681271025]) (a6989586621681271436 :: [b6989586621681271026]) = ZipWithM_ a6989586621681271434 a6989586621681271435 a6989586621681271436 Source #

data FoldlMSym0 :: forall b6989586621680486585 a6989586621680486586 m6989586621680486584 t6989586621680486583. (~>) ((~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) ((~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) (b6989586621680486585 ~> (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) (b6989586621680486585 ~> (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) -> Type) (a6989586621680487203 :: b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) (b6989586621680486585 ~> (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) -> Type) (a6989586621680487203 :: b6989586621680486585 ~> (a6989586621680486586 ~> m6989586621680486584 b6989586621680486585)) = FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type

data FoldlMSym1 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) :: forall t6989586621680486583. (~>) b6989586621680486585 ((~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d t :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym1 d t) Source #

SuppressUnusedWarnings (FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type) (a6989586621680487204 :: b6989586621680486585) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680487203 t6989586621680486583 :: TyFun b6989586621680486585 (t6989586621680486583 a6989586621680486586 ~> m6989586621680486584 b6989586621680486585) -> Type) (a6989586621680487204 :: b6989586621680486585) = FoldlMSym2 a6989586621680487203 a6989586621680487204 t6989586621680486583 :: TyFun (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585) -> Type

data FoldlMSym2 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) :: forall t6989586621680486583. (~>) (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 t :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym2 d1 d2 t) Source #

SuppressUnusedWarnings (FoldlMSym2 a6989586621680487204 a6989586621680487203 t6989586621680486583 :: TyFun (t6989586621680486583 a6989586621680486586) (m6989586621680486584 b6989586621680486585) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680487204 a6989586621680487203 t :: TyFun (t a) (m b) -> Type) (a6989586621680487205 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680487204 a6989586621680487203 t :: TyFun (t a) (m b) -> Type) (a6989586621680487205 :: t a) = FoldlM a6989586621680487204 a6989586621680487203 a6989586621680487205

type FoldlMSym3 (a6989586621680487203 :: (~>) b6989586621680486585 ((~>) a6989586621680486586 (m6989586621680486584 b6989586621680486585))) (a6989586621680487204 :: b6989586621680486585) (a6989586621680487205 :: t6989586621680486583 a6989586621680486586) = FoldlM a6989586621680487203 a6989586621680487204 a6989586621680487205 Source #

data ReplicateMSym0 :: forall m6989586621681271014 a6989586621681271015. (~>) Nat ((~>) (m6989586621681271014 a6989586621681271015) (m6989586621681271014 [a6989586621681271015])) Source #

Instances

Instances details
SApplicative m => SingI (ReplicateMSym0 :: TyFun Nat (m a ~> m [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (ReplicateMSym0 :: TyFun Nat (m6989586621681271014 a6989586621681271015 ~> m6989586621681271014 [a6989586621681271015]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateMSym0 :: TyFun Nat (m6989586621681271014 a6989586621681271015 ~> m6989586621681271014 [a6989586621681271015]) -> Type) (a6989586621681271391 :: Nat) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateMSym0 :: TyFun Nat (m6989586621681271014 a6989586621681271015 ~> m6989586621681271014 [a6989586621681271015]) -> Type) (a6989586621681271391 :: Nat) = ReplicateMSym1 a6989586621681271391 m6989586621681271014 a6989586621681271015 :: TyFun (m6989586621681271014 a6989586621681271015) (m6989586621681271014 [a6989586621681271015]) -> Type

data ReplicateMSym1 (a6989586621681271391 :: Nat) :: forall m6989586621681271014 a6989586621681271015. (~>) (m6989586621681271014 a6989586621681271015) (m6989586621681271014 [a6989586621681271015]) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI (ReplicateMSym1 d m a :: TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (ReplicateMSym1 d m a) Source #

SuppressUnusedWarnings (ReplicateMSym1 a6989586621681271391 m6989586621681271014 a6989586621681271015 :: TyFun (m6989586621681271014 a6989586621681271015) (m6989586621681271014 [a6989586621681271015]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateMSym1 a6989586621681271391 m a :: TyFun (m a) (m [a]) -> Type) (a6989586621681271392 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateMSym1 a6989586621681271391 m a :: TyFun (m a) (m [a]) -> Type) (a6989586621681271392 :: m a) = ReplicateM a6989586621681271391 a6989586621681271392

type ReplicateMSym2 (a6989586621681271391 :: Nat) (a6989586621681271392 :: m6989586621681271014 a6989586621681271015) = ReplicateM a6989586621681271391 a6989586621681271392 Source #

data ReplicateM_Sym0 :: forall m6989586621681271012 a6989586621681271013. (~>) Nat ((~>) (m6989586621681271012 a6989586621681271013) (m6989586621681271012 ())) Source #

Instances

Instances details
SApplicative m => SingI (ReplicateM_Sym0 :: TyFun Nat (m a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (ReplicateM_Sym0 :: TyFun Nat (m6989586621681271012 a6989586621681271013 ~> m6989586621681271012 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateM_Sym0 :: TyFun Nat (m6989586621681271012 a6989586621681271013 ~> m6989586621681271012 ()) -> Type) (a6989586621681271372 :: Nat) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateM_Sym0 :: TyFun Nat (m6989586621681271012 a6989586621681271013 ~> m6989586621681271012 ()) -> Type) (a6989586621681271372 :: Nat) = ReplicateM_Sym1 a6989586621681271372 m6989586621681271012 a6989586621681271013 :: TyFun (m6989586621681271012 a6989586621681271013) (m6989586621681271012 ()) -> Type

data ReplicateM_Sym1 (a6989586621681271372 :: Nat) :: forall m6989586621681271012 a6989586621681271013. (~>) (m6989586621681271012 a6989586621681271013) (m6989586621681271012 ()) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI (ReplicateM_Sym1 d m a :: TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (ReplicateM_Sym1 d m a) Source #

SuppressUnusedWarnings (ReplicateM_Sym1 a6989586621681271372 m6989586621681271012 a6989586621681271013 :: TyFun (m6989586621681271012 a6989586621681271013) (m6989586621681271012 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateM_Sym1 a6989586621681271372 m a :: TyFun (m a) (m ()) -> Type) (a6989586621681271373 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (ReplicateM_Sym1 a6989586621681271372 m a :: TyFun (m a) (m ()) -> Type) (a6989586621681271373 :: m a) = ReplicateM_ a6989586621681271372 a6989586621681271373

type ReplicateM_Sym2 (a6989586621681271372 :: Nat) (a6989586621681271373 :: m6989586621681271012 a6989586621681271013) = ReplicateM_ a6989586621681271372 a6989586621681271373 Source #

data GuardSym0 :: forall f6989586621679566867. (~>) Bool (f6989586621679566867 ()) Source #

Instances

Instances details
SAlternative f => SingI (GuardSym0 :: TyFun Bool (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (GuardSym0 :: TyFun Bool (f6989586621679566867 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (GuardSym0 :: TyFun Bool (f6989586621679566867 ()) -> Type) (a6989586621679567033 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (GuardSym0 :: TyFun Bool (f6989586621679566867 ()) -> Type) (a6989586621679567033 :: Bool) = Guard a6989586621679567033 :: f6989586621679566867 ()

type GuardSym1 (a6989586621679567033 :: Bool) = Guard a6989586621679567033 Source #

data WhenSym0 :: forall f6989586621679566896. (~>) Bool ((~>) (f6989586621679566896 ()) (f6989586621679566896 ())) Source #

Instances

Instances details
SApplicative f => SingI (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (WhenSym0 :: TyFun Bool (f6989586621679566896 () ~> f6989586621679566896 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (WhenSym0 :: TyFun Bool (f6989586621679566896 () ~> f6989586621679566896 ()) -> Type) (a6989586621679567281 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (WhenSym0 :: TyFun Bool (f6989586621679566896 () ~> f6989586621679566896 ()) -> Type) (a6989586621679567281 :: Bool) = WhenSym1 a6989586621679567281 f6989586621679566896 :: TyFun (f6989586621679566896 ()) (f6989586621679566896 ()) -> Type

data WhenSym1 (a6989586621679567281 :: Bool) :: forall f6989586621679566896. (~>) (f6989586621679566896 ()) (f6989586621679566896 ()) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (WhenSym1 d f :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (WhenSym1 d f) Source #

SuppressUnusedWarnings (WhenSym1 a6989586621679567281 f6989586621679566896 :: TyFun (f6989586621679566896 ()) (f6989586621679566896 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (WhenSym1 a6989586621679567281 f :: TyFun (f ()) (f ()) -> Type) (a6989586621679567282 :: f ()) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (WhenSym1 a6989586621679567281 f :: TyFun (f ()) (f ()) -> Type) (a6989586621679567282 :: f ()) = When a6989586621679567281 a6989586621679567282

type WhenSym2 (a6989586621679567281 :: Bool) (a6989586621679567282 :: f6989586621679566896 ()) = When a6989586621679567281 a6989586621679567282 Source #

data UnlessSym0 :: forall f6989586621681271011. (~>) Bool ((~>) (f6989586621681271011 ()) (f6989586621681271011 ())) Source #

Instances

Instances details
SApplicative f => SingI (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings (UnlessSym0 :: TyFun Bool (f6989586621681271011 () ~> f6989586621681271011 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (UnlessSym0 :: TyFun Bool (f6989586621681271011 () ~> f6989586621681271011 ()) -> Type) (a6989586621681271363 :: Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (UnlessSym0 :: TyFun Bool (f6989586621681271011 () ~> f6989586621681271011 ()) -> Type) (a6989586621681271363 :: Bool) = UnlessSym1 a6989586621681271363 f6989586621681271011 :: TyFun (f6989586621681271011 ()) (f6989586621681271011 ()) -> Type

data UnlessSym1 (a6989586621681271363 :: Bool) :: forall f6989586621681271011. (~>) (f6989586621681271011 ()) (f6989586621681271011 ()) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI (UnlessSym1 d f :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (UnlessSym1 d f) Source #

SuppressUnusedWarnings (UnlessSym1 a6989586621681271363 f6989586621681271011 :: TyFun (f6989586621681271011 ()) (f6989586621681271011 ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (UnlessSym1 a6989586621681271363 f :: TyFun (f ()) (f ()) -> Type) (a6989586621681271364 :: f ()) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (UnlessSym1 a6989586621681271363 f :: TyFun (f ()) (f ()) -> Type) (a6989586621681271364 :: f ()) = Unless a6989586621681271363 a6989586621681271364

type UnlessSym2 (a6989586621681271363 :: Bool) (a6989586621681271364 :: f6989586621681271011 ()) = Unless a6989586621681271363 a6989586621681271364 Source #

data LiftMSym0 :: forall a16989586621679566894 r6989586621679566895 m6989586621679566893. (~>) ((~>) a16989586621679566894 r6989586621679566895) ((~>) (m6989586621679566893 a16989586621679566894) (m6989586621679566893 r6989586621679566895)) Source #

Instances

Instances details
SMonad m => SingI (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftMSym0 :: TyFun (a16989586621679566894 ~> r6989586621679566895) (m6989586621679566893 a16989586621679566894 ~> m6989586621679566893 r6989586621679566895) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftMSym0 :: TyFun (a16989586621679566894 ~> r6989586621679566895) (m6989586621679566893 a16989586621679566894 ~> m6989586621679566893 r6989586621679566895) -> Type) (a6989586621679567268 :: a16989586621679566894 ~> r6989586621679566895) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftMSym0 :: TyFun (a16989586621679566894 ~> r6989586621679566895) (m6989586621679566893 a16989586621679566894 ~> m6989586621679566893 r6989586621679566895) -> Type) (a6989586621679567268 :: a16989586621679566894 ~> r6989586621679566895) = LiftMSym1 a6989586621679567268 m6989586621679566893 :: TyFun (m6989586621679566893 a16989586621679566894) (m6989586621679566893 r6989586621679566895) -> Type

data LiftMSym1 (a6989586621679567268 :: (~>) a16989586621679566894 r6989586621679566895) :: forall m6989586621679566893. (~>) (m6989586621679566893 a16989586621679566894) (m6989586621679566893 r6989586621679566895) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (LiftMSym1 d m :: TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftMSym1 d m) Source #

SuppressUnusedWarnings (LiftMSym1 a6989586621679567268 m6989586621679566893 :: TyFun (m6989586621679566893 a16989586621679566894) (m6989586621679566893 r6989586621679566895) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftMSym1 a6989586621679567268 m :: TyFun (m a1) (m r) -> Type) (a6989586621679567269 :: m a1) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftMSym1 a6989586621679567268 m :: TyFun (m a1) (m r) -> Type) (a6989586621679567269 :: m a1) = LiftM a6989586621679567268 a6989586621679567269

type LiftMSym2 (a6989586621679567268 :: (~>) a16989586621679566894 r6989586621679566895) (a6989586621679567269 :: m6989586621679566893 a16989586621679566894) = LiftM a6989586621679567268 a6989586621679567269 Source #

data LiftM2Sym0 :: forall a16989586621679566890 a26989586621679566891 r6989586621679566892 m6989586621679566889. (~>) ((~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) ((~>) (m6989586621679566889 a16989586621679566890) ((~>) (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892))) Source #

Instances

Instances details
SMonad m => SingI (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftM2Sym0 :: TyFun (a16989586621679566890 ~> (a26989586621679566891 ~> r6989586621679566892)) (m6989586621679566889 a16989586621679566890 ~> (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM2Sym0 :: TyFun (a16989586621679566890 ~> (a26989586621679566891 ~> r6989586621679566892)) (m6989586621679566889 a16989586621679566890 ~> (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892)) -> Type) (a6989586621679567242 :: a16989586621679566890 ~> (a26989586621679566891 ~> r6989586621679566892)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM2Sym0 :: TyFun (a16989586621679566890 ~> (a26989586621679566891 ~> r6989586621679566892)) (m6989586621679566889 a16989586621679566890 ~> (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892)) -> Type) (a6989586621679567242 :: a16989586621679566890 ~> (a26989586621679566891 ~> r6989586621679566892)) = LiftM2Sym1 a6989586621679567242 m6989586621679566889 :: TyFun (m6989586621679566889 a16989586621679566890) (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892) -> Type

data LiftM2Sym1 (a6989586621679567242 :: (~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) :: forall m6989586621679566889. (~>) (m6989586621679566889 a16989586621679566890) ((~>) (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (LiftM2Sym1 d m :: TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM2Sym1 d m) Source #

SuppressUnusedWarnings (LiftM2Sym1 a6989586621679567242 m6989586621679566889 :: TyFun (m6989586621679566889 a16989586621679566890) (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM2Sym1 a6989586621679567242 m6989586621679566889 :: TyFun (m6989586621679566889 a16989586621679566890) (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892) -> Type) (a6989586621679567243 :: m6989586621679566889 a16989586621679566890) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM2Sym1 a6989586621679567242 m6989586621679566889 :: TyFun (m6989586621679566889 a16989586621679566890) (m6989586621679566889 a26989586621679566891 ~> m6989586621679566889 r6989586621679566892) -> Type) (a6989586621679567243 :: m6989586621679566889 a16989586621679566890) = LiftM2Sym2 a6989586621679567242 a6989586621679567243

data LiftM2Sym2 (a6989586621679567242 :: (~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) (a6989586621679567243 :: m6989586621679566889 a16989586621679566890) :: (~>) (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI (LiftM2Sym2 d1 d2 :: TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM2Sym2 d1 d2) Source #

SuppressUnusedWarnings (LiftM2Sym2 a6989586621679567243 a6989586621679567242 :: TyFun (m6989586621679566889 a26989586621679566891) (m6989586621679566889 r6989586621679566892) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM2Sym2 a6989586621679567243 a6989586621679567242 :: TyFun (m a2) (m r) -> Type) (a6989586621679567244 :: m a2) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM2Sym2 a6989586621679567243 a6989586621679567242 :: TyFun (m a2) (m r) -> Type) (a6989586621679567244 :: m a2) = LiftM2 a6989586621679567243 a6989586621679567242 a6989586621679567244

type LiftM2Sym3 (a6989586621679567242 :: (~>) a16989586621679566890 ((~>) a26989586621679566891 r6989586621679566892)) (a6989586621679567243 :: m6989586621679566889 a16989586621679566890) (a6989586621679567244 :: m6989586621679566889 a26989586621679566891) = LiftM2 a6989586621679567242 a6989586621679567243 a6989586621679567244 Source #

data LiftM3Sym0 :: forall a16989586621679566885 a26989586621679566886 a36989586621679566887 r6989586621679566888 m6989586621679566884. (~>) ((~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) ((~>) (m6989586621679566884 a16989586621679566885) ((~>) (m6989586621679566884 a26989586621679566886) ((~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888)))) Source #

Instances

Instances details
SMonad m => SingI (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftM3Sym0 :: TyFun (a16989586621679566885 ~> (a26989586621679566886 ~> (a36989586621679566887 ~> r6989586621679566888))) (m6989586621679566884 a16989586621679566885 ~> (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym0 :: TyFun (a16989586621679566885 ~> (a26989586621679566886 ~> (a36989586621679566887 ~> r6989586621679566888))) (m6989586621679566884 a16989586621679566885 ~> (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888))) -> Type) (a6989586621679567200 :: a16989586621679566885 ~> (a26989586621679566886 ~> (a36989586621679566887 ~> r6989586621679566888))) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym0 :: TyFun (a16989586621679566885 ~> (a26989586621679566886 ~> (a36989586621679566887 ~> r6989586621679566888))) (m6989586621679566884 a16989586621679566885 ~> (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888))) -> Type) (a6989586621679567200 :: a16989586621679566885 ~> (a26989586621679566886 ~> (a36989586621679566887 ~> r6989586621679566888))) = LiftM3Sym1 a6989586621679567200 m6989586621679566884 :: TyFun (m6989586621679566884 a16989586621679566885) (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888)) -> Type

data LiftM3Sym1 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) :: forall m6989586621679566884. (~>) (m6989586621679566884 a16989586621679566885) ((~>) (m6989586621679566884 a26989586621679566886) ((~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (LiftM3Sym1 d m :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM3Sym1 d m) Source #

SuppressUnusedWarnings (LiftM3Sym1 a6989586621679567200 m6989586621679566884 :: TyFun (m6989586621679566884 a16989586621679566885) (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym1 a6989586621679567200 m6989586621679566884 :: TyFun (m6989586621679566884 a16989586621679566885) (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888)) -> Type) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym1 a6989586621679567200 m6989586621679566884 :: TyFun (m6989586621679566884 a16989586621679566885) (m6989586621679566884 a26989586621679566886 ~> (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888)) -> Type) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) = LiftM3Sym2 a6989586621679567200 a6989586621679567201

data LiftM3Sym2 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) :: (~>) (m6989586621679566884 a26989586621679566886) ((~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI (LiftM3Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM3Sym2 d1 d2) Source #

SuppressUnusedWarnings (LiftM3Sym2 a6989586621679567201 a6989586621679567200 :: TyFun (m6989586621679566884 a26989586621679566886) (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym2 a6989586621679567201 a6989586621679567200 :: TyFun (m6989586621679566884 a26989586621679566886) (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888) -> Type) (a6989586621679567202 :: m6989586621679566884 a26989586621679566886) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym2 a6989586621679567201 a6989586621679567200 :: TyFun (m6989586621679566884 a26989586621679566886) (m6989586621679566884 a36989586621679566887 ~> m6989586621679566884 r6989586621679566888) -> Type) (a6989586621679567202 :: m6989586621679566884 a26989586621679566886) = LiftM3Sym3 a6989586621679567201 a6989586621679567200 a6989586621679567202

data LiftM3Sym3 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) (a6989586621679567202 :: m6989586621679566884 a26989586621679566886) :: (~>) (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM3Sym3 d1 d2 d3 :: TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM3Sym3 d1 d2 d3) Source #

SuppressUnusedWarnings (LiftM3Sym3 a6989586621679567202 a6989586621679567201 a6989586621679567200 :: TyFun (m6989586621679566884 a36989586621679566887) (m6989586621679566884 r6989586621679566888) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym3 a6989586621679567202 a6989586621679567201 a6989586621679567200 :: TyFun (m a3) (m r) -> Type) (a6989586621679567203 :: m a3) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM3Sym3 a6989586621679567202 a6989586621679567201 a6989586621679567200 :: TyFun (m a3) (m r) -> Type) (a6989586621679567203 :: m a3) = LiftM3 a6989586621679567202 a6989586621679567201 a6989586621679567200 a6989586621679567203

type LiftM3Sym4 (a6989586621679567200 :: (~>) a16989586621679566885 ((~>) a26989586621679566886 ((~>) a36989586621679566887 r6989586621679566888))) (a6989586621679567201 :: m6989586621679566884 a16989586621679566885) (a6989586621679567202 :: m6989586621679566884 a26989586621679566886) (a6989586621679567203 :: m6989586621679566884 a36989586621679566887) = LiftM3 a6989586621679567200 a6989586621679567201 a6989586621679567202 a6989586621679567203 Source #

data LiftM4Sym0 :: forall a16989586621679566879 a26989586621679566880 a36989586621679566881 a46989586621679566882 r6989586621679566883 m6989586621679566878. (~>) ((~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) ((~>) (m6989586621679566878 a16989586621679566879) ((~>) (m6989586621679566878 a26989586621679566880) ((~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883))))) Source #

Instances

Instances details
SMonad m => SingI (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftM4Sym0 :: TyFun (a16989586621679566879 ~> (a26989586621679566880 ~> (a36989586621679566881 ~> (a46989586621679566882 ~> r6989586621679566883)))) (m6989586621679566878 a16989586621679566879 ~> (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym0 :: TyFun (a16989586621679566879 ~> (a26989586621679566880 ~> (a36989586621679566881 ~> (a46989586621679566882 ~> r6989586621679566883)))) (m6989586621679566878 a16989586621679566879 ~> (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883)))) -> Type) (a6989586621679567139 :: a16989586621679566879 ~> (a26989586621679566880 ~> (a36989586621679566881 ~> (a46989586621679566882 ~> r6989586621679566883)))) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym0 :: TyFun (a16989586621679566879 ~> (a26989586621679566880 ~> (a36989586621679566881 ~> (a46989586621679566882 ~> r6989586621679566883)))) (m6989586621679566878 a16989586621679566879 ~> (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883)))) -> Type) (a6989586621679567139 :: a16989586621679566879 ~> (a26989586621679566880 ~> (a36989586621679566881 ~> (a46989586621679566882 ~> r6989586621679566883)))) = LiftM4Sym1 a6989586621679567139 m6989586621679566878 :: TyFun (m6989586621679566878 a16989586621679566879) (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883))) -> Type

data LiftM4Sym1 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) :: forall m6989586621679566878. (~>) (m6989586621679566878 a16989586621679566879) ((~>) (m6989586621679566878 a26989586621679566880) ((~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883)))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (LiftM4Sym1 d m :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM4Sym1 d m) Source #

SuppressUnusedWarnings (LiftM4Sym1 a6989586621679567139 m6989586621679566878 :: TyFun (m6989586621679566878 a16989586621679566879) (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym1 a6989586621679567139 m6989586621679566878 :: TyFun (m6989586621679566878 a16989586621679566879) (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883))) -> Type) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym1 a6989586621679567139 m6989586621679566878 :: TyFun (m6989586621679566878 a16989586621679566879) (m6989586621679566878 a26989586621679566880 ~> (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883))) -> Type) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) = LiftM4Sym2 a6989586621679567139 a6989586621679567140

data LiftM4Sym2 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) :: (~>) (m6989586621679566878 a26989586621679566880) ((~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883))) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI (LiftM4Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM4Sym2 d1 d2) Source #

SuppressUnusedWarnings (LiftM4Sym2 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a26989586621679566880) (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym2 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a26989586621679566880) (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883)) -> Type) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym2 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a26989586621679566880) (m6989586621679566878 a36989586621679566881 ~> (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883)) -> Type) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) = LiftM4Sym3 a6989586621679567140 a6989586621679567139 a6989586621679567141

data LiftM4Sym3 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) :: (~>) (m6989586621679566878 a36989586621679566881) ((~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM4Sym3 d1 d2 d3 :: TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM4Sym3 d1 d2 d3) Source #

SuppressUnusedWarnings (LiftM4Sym3 a6989586621679567141 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a36989586621679566881) (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym3 a6989586621679567141 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a36989586621679566881) (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883) -> Type) (a6989586621679567142 :: m6989586621679566878 a36989586621679566881) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym3 a6989586621679567141 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a36989586621679566881) (m6989586621679566878 a46989586621679566882 ~> m6989586621679566878 r6989586621679566883) -> Type) (a6989586621679567142 :: m6989586621679566878 a36989586621679566881) = LiftM4Sym4 a6989586621679567141 a6989586621679567140 a6989586621679567139 a6989586621679567142

data LiftM4Sym4 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) (a6989586621679567142 :: m6989586621679566878 a36989586621679566881) :: (~>) (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI (LiftM4Sym4 d1 d2 d3 d4 :: TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM4Sym4 d1 d2 d3 d4) Source #

SuppressUnusedWarnings (LiftM4Sym4 a6989586621679567142 a6989586621679567141 a6989586621679567140 a6989586621679567139 :: TyFun (m6989586621679566878 a46989586621679566882) (m6989586621679566878 r6989586621679566883) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym4 a6989586621679567142 a6989586621679567141 a6989586621679567140 a6989586621679567139 :: TyFun (m a4) (m r) -> Type) (a6989586621679567143 :: m a4) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM4Sym4 a6989586621679567142 a6989586621679567141 a6989586621679567140 a6989586621679567139 :: TyFun (m a4) (m r) -> Type) (a6989586621679567143 :: m a4) = LiftM4 a6989586621679567142 a6989586621679567141 a6989586621679567140 a6989586621679567139 a6989586621679567143

type LiftM4Sym5 (a6989586621679567139 :: (~>) a16989586621679566879 ((~>) a26989586621679566880 ((~>) a36989586621679566881 ((~>) a46989586621679566882 r6989586621679566883)))) (a6989586621679567140 :: m6989586621679566878 a16989586621679566879) (a6989586621679567141 :: m6989586621679566878 a26989586621679566880) (a6989586621679567142 :: m6989586621679566878 a36989586621679566881) (a6989586621679567143 :: m6989586621679566878 a46989586621679566882) = LiftM4 a6989586621679567139 a6989586621679567140 a6989586621679567141 a6989586621679567142 a6989586621679567143 Source #

data LiftM5Sym0 :: forall a16989586621679566872 a26989586621679566873 a36989586621679566874 a46989586621679566875 a56989586621679566876 r6989586621679566877 m6989586621679566871. (~>) ((~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) ((~>) (m6989586621679566871 a16989586621679566872) ((~>) (m6989586621679566871 a26989586621679566873) ((~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877)))))) Source #

Instances

Instances details
SMonad m => SingI (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

SuppressUnusedWarnings (LiftM5Sym0 :: TyFun (a16989586621679566872 ~> (a26989586621679566873 ~> (a36989586621679566874 ~> (a46989586621679566875 ~> (a56989586621679566876 ~> r6989586621679566877))))) (m6989586621679566871 a16989586621679566872 ~> (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym0 :: TyFun (a16989586621679566872 ~> (a26989586621679566873 ~> (a36989586621679566874 ~> (a46989586621679566875 ~> (a56989586621679566876 ~> r6989586621679566877))))) (m6989586621679566871 a16989586621679566872 ~> (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877))))) -> Type) (a6989586621679567056 :: a16989586621679566872 ~> (a26989586621679566873 ~> (a36989586621679566874 ~> (a46989586621679566875 ~> (a56989586621679566876 ~> r6989586621679566877))))) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym0 :: TyFun (a16989586621679566872 ~> (a26989586621679566873 ~> (a36989586621679566874 ~> (a46989586621679566875 ~> (a56989586621679566876 ~> r6989586621679566877))))) (m6989586621679566871 a16989586621679566872 ~> (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877))))) -> Type) (a6989586621679567056 :: a16989586621679566872 ~> (a26989586621679566873 ~> (a36989586621679566874 ~> (a46989586621679566875 ~> (a56989586621679566876 ~> r6989586621679566877))))) = LiftM5Sym1 a6989586621679567056 m6989586621679566871 :: TyFun (m6989586621679566871 a16989586621679566872) (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)))) -> Type

data LiftM5Sym1 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) :: forall m6989586621679566871. (~>) (m6989586621679566871 a16989586621679566872) ((~>) (m6989586621679566871 a26989586621679566873) ((~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877))))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (LiftM5Sym1 d m :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM5Sym1 d m) Source #

SuppressUnusedWarnings (LiftM5Sym1 a6989586621679567056 m6989586621679566871 :: TyFun (m6989586621679566871 a16989586621679566872) (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym1 a6989586621679567056 m6989586621679566871 :: TyFun (m6989586621679566871 a16989586621679566872) (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)))) -> Type) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym1 a6989586621679567056 m6989586621679566871 :: TyFun (m6989586621679566871 a16989586621679566872) (m6989586621679566871 a26989586621679566873 ~> (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)))) -> Type) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) = LiftM5Sym2 a6989586621679567056 a6989586621679567057

data LiftM5Sym2 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) :: (~>) (m6989586621679566871 a26989586621679566873) ((~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877)))) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI (LiftM5Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM5Sym2 d1 d2) Source #

SuppressUnusedWarnings (LiftM5Sym2 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a26989586621679566873) (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym2 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a26989586621679566873) (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877))) -> Type) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym2 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a26989586621679566873) (m6989586621679566871 a36989586621679566874 ~> (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877))) -> Type) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) = LiftM5Sym3 a6989586621679567057 a6989586621679567056 a6989586621679567058

data LiftM5Sym3 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) :: (~>) (m6989586621679566871 a36989586621679566874) ((~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877))) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM5Sym3 d1 d2 d3 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM5Sym3 d1 d2 d3) Source #

SuppressUnusedWarnings (LiftM5Sym3 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a36989586621679566874) (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym3 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a36989586621679566874) (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)) -> Type) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym3 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a36989586621679566874) (m6989586621679566871 a46989586621679566875 ~> (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877)) -> Type) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) = LiftM5Sym4 a6989586621679567058 a6989586621679567057 a6989586621679567056 a6989586621679567059

data LiftM5Sym4 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) :: (~>) (m6989586621679566871 a46989586621679566875) ((~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI (LiftM5Sym4 d1 d2 d3 d4 :: TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM5Sym4 d1 d2 d3 d4) Source #

SuppressUnusedWarnings (LiftM5Sym4 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a46989586621679566875) (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym4 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a46989586621679566875) (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877) -> Type) (a6989586621679567060 :: m6989586621679566871 a46989586621679566875) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym4 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a46989586621679566875) (m6989586621679566871 a56989586621679566876 ~> m6989586621679566871 r6989586621679566877) -> Type) (a6989586621679567060 :: m6989586621679566871 a46989586621679566875) = LiftM5Sym5 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 a6989586621679567060

data LiftM5Sym5 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) (a6989586621679567060 :: m6989586621679566871 a46989586621679566875) :: (~>) (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4, SingI d5) => SingI (LiftM5Sym5 d1 d2 d3 d4 d5 :: TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (LiftM5Sym5 d1 d2 d3 d4 d5) Source #

SuppressUnusedWarnings (LiftM5Sym5 a6989586621679567060 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m6989586621679566871 a56989586621679566876) (m6989586621679566871 r6989586621679566877) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym5 a6989586621679567060 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m a5) (m r) -> Type) (a6989586621679567061 :: m a5) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (LiftM5Sym5 a6989586621679567060 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 :: TyFun (m a5) (m r) -> Type) (a6989586621679567061 :: m a5) = LiftM5 a6989586621679567060 a6989586621679567059 a6989586621679567058 a6989586621679567057 a6989586621679567056 a6989586621679567061

type LiftM5Sym6 (a6989586621679567056 :: (~>) a16989586621679566872 ((~>) a26989586621679566873 ((~>) a36989586621679566874 ((~>) a46989586621679566875 ((~>) a56989586621679566876 r6989586621679566877))))) (a6989586621679567057 :: m6989586621679566871 a16989586621679566872) (a6989586621679567058 :: m6989586621679566871 a26989586621679566873) (a6989586621679567059 :: m6989586621679566871 a36989586621679566874) (a6989586621679567060 :: m6989586621679566871 a46989586621679566875) (a6989586621679567061 :: m6989586621679566871 a56989586621679566876) = LiftM5 a6989586621679567056 a6989586621679567057 a6989586621679567058 a6989586621679567059 a6989586621679567060 a6989586621679567061 Source #

data ApSym0 :: forall m6989586621679566868 a6989586621679566869 b6989586621679566870. (~>) (m6989586621679566868 ((~>) a6989586621679566869 b6989586621679566870)) ((~>) (m6989586621679566868 a6989586621679566869) (m6989586621679566868 b6989586621679566870)) Source #

Instances

Instances details
SMonad m => SingI (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing ApSym0 Source #

SuppressUnusedWarnings (ApSym0 :: TyFun (m6989586621679566868 (a6989586621679566869 ~> b6989586621679566870)) (m6989586621679566868 a6989586621679566869 ~> m6989586621679566868 b6989586621679566870) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (ApSym0 :: TyFun (m6989586621679566868 (a6989586621679566869 ~> b6989586621679566870)) (m6989586621679566868 a6989586621679566869 ~> m6989586621679566868 b6989586621679566870) -> Type) (a6989586621679567035 :: m6989586621679566868 (a6989586621679566869 ~> b6989586621679566870)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (ApSym0 :: TyFun (m6989586621679566868 (a6989586621679566869 ~> b6989586621679566870)) (m6989586621679566868 a6989586621679566869 ~> m6989586621679566868 b6989586621679566870) -> Type) (a6989586621679567035 :: m6989586621679566868 (a6989586621679566869 ~> b6989586621679566870)) = ApSym1 a6989586621679567035

data ApSym1 (a6989586621679567035 :: m6989586621679566868 ((~>) a6989586621679566869 b6989586621679566870)) :: (~>) (m6989586621679566868 a6989586621679566869) (m6989586621679566868 b6989586621679566870) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (ApSym1 d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

Methods

sing :: Sing (ApSym1 d) Source #

SuppressUnusedWarnings (ApSym1 a6989586621679567035 :: TyFun (m6989586621679566868 a6989586621679566869) (m6989586621679566868 b6989586621679566870) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (ApSym1 a6989586621679567035 :: TyFun (m a) (m b) -> Type) (a6989586621679567036 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Internal

type Apply (ApSym1 a6989586621679567035 :: TyFun (m a) (m b) -> Type) (a6989586621679567036 :: m a) = Ap a6989586621679567035 a6989586621679567036

type ApSym2 (a6989586621679567035 :: m6989586621679566868 ((~>) a6989586621679566869 b6989586621679566870)) (a6989586621679567036 :: m6989586621679566868 a6989586621679566869) = Ap a6989586621679567035 a6989586621679567036 Source #

data (<$!>@#@$) :: forall a6989586621681271009 b6989586621681271010 m6989586621681271008. (~>) ((~>) a6989586621681271009 b6989586621681271010) ((~>) (m6989586621681271008 a6989586621681271009) (m6989586621681271008 b6989586621681271010)) infixl 4 Source #

Instances

Instances details
SMonad m => SingI ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

SuppressUnusedWarnings ((<$!>@#@$) :: TyFun (a6989586621681271009 ~> b6989586621681271010) (m6989586621681271008 a6989586621681271009 ~> m6989586621681271008 b6989586621681271010) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply ((<$!>@#@$) :: TyFun (a6989586621681271009 ~> b6989586621681271010) (m6989586621681271008 a6989586621681271009 ~> m6989586621681271008 b6989586621681271010) -> Type) (a6989586621681271346 :: a6989586621681271009 ~> b6989586621681271010) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply ((<$!>@#@$) :: TyFun (a6989586621681271009 ~> b6989586621681271010) (m6989586621681271008 a6989586621681271009 ~> m6989586621681271008 b6989586621681271010) -> Type) (a6989586621681271346 :: a6989586621681271009 ~> b6989586621681271010) = a6989586621681271346 <$!>@#@$$ m6989586621681271008 :: TyFun (m6989586621681271008 a6989586621681271009) (m6989586621681271008 b6989586621681271010) -> Type

data (<$!>@#@$$) (a6989586621681271346 :: (~>) a6989586621681271009 b6989586621681271010) :: forall m6989586621681271008. (~>) (m6989586621681271008 a6989586621681271009) (m6989586621681271008 b6989586621681271010) infixl 4 Source #

Instances

Instances details
(SMonad m, SingI d) => SingI (d <$!>@#@$$ m :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

Methods

sing :: Sing (d <$!>@#@$$ m) Source #

SuppressUnusedWarnings (a6989586621681271346 <$!>@#@$$ m6989586621681271008 :: TyFun (m6989586621681271008 a6989586621681271009) (m6989586621681271008 b6989586621681271010) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271346 <$!>@#@$$ m :: TyFun (m a) (m b) -> Type) (a6989586621681271347 :: m a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad

type Apply (a6989586621681271346 <$!>@#@$$ m :: TyFun (m a) (m b) -> Type) (a6989586621681271347 :: m a) = a6989586621681271346 <$!> a6989586621681271347

type (<$!>@#@$$$) (a6989586621681271346 :: (~>) a6989586621681271009 b6989586621681271010) (a6989586621681271347 :: m6989586621681271008 a6989586621681271009) = (<$!>) a6989586621681271346 a6989586621681271347 Source #

Orphan instances

SMonad Down Source # 
Instance details

Methods

(%>>=) :: forall a b (t :: Down a) (t :: a ~> Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a b (t :: Down a) (t :: Down b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

PMonad Down Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #

SMonoid a => SMonad ((,) a) Source # 
Instance details

Methods

(%>>=) :: forall a0 b (t :: (a, a0)) (t :: a0 ~> (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t) Source #

(%>>) :: forall a0 b (t :: (a, a0)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Apply ReturnSym0 t) Source #

PMonad ((,) a) Source # 
Instance details

Associated Types

type arg >>= arg :: m b Source #

type arg >> arg :: m b Source #

type Return arg :: m a Source #