from __future__ import print_function, division
from sympy.core import Mul
from sympy.functions import DiracDelta, Heaviside
from sympy.solvers import solve
from sympy.core.compatibility import default_sort_key
def change_mul(node, x):
"""change_mul(node, x)
Rearranges the operands of a product, bringing to front any simple
DiracDelta expression.
If no simple DiracDelta expression was found, then all the DiracDelta
expressions are simplified (using DiracDelta.simplify).
Return: (dirac, new node)
Where:
o dirac is either a simple DiracDelta expression or None (if no simple
expression was found);
o new node is either a simplified DiracDelta expressions or None (if it
could not be simplified).
Examples
========
>>> from sympy import DiracDelta, cos
>>> from sympy.integrals.deltafunctions import change_mul
>>> from sympy.abc import x, y
>>> change_mul(x*y*DiracDelta(x)*cos(x), x)
(DiracDelta(x), x*y*cos(x))
>>> change_mul(x*y*DiracDelta(x**2 - 1)*cos(x), x)
(None, x*y*cos(x)*DiracDelta(x - 1)/2 + x*y*cos(x)*DiracDelta(x + 1)/2)
>>> change_mul(x*y*DiracDelta(cos(x))*cos(x), x)
(None, None)
See Also
========
sympy.functions.special.delta_functions.DiracDelta
deltaintegrate
"""
if not (node.is_Mul or node.is_Pow):
return node
new_args = []
dirac = None
#Sorting is needed so that we consistently collapse the same delta;
#However, we must preserve the ordering of non-commutative terms
c, nc = node.args_cnc()
sorted_args = sorted(c, key=default_sort_key)
sorted_args.extend(nc)
for arg in sorted_args:
if arg.is_Pow and arg.base.func is DiracDelta:
new_args.append(arg.func(arg.base, arg.exp - 1))
arg = arg.base
if dirac is None and (arg.func is DiracDelta and arg.is_simple(x)
and (len(arg.args) <= 1 or arg.args[1] == 0)):
dirac = arg
else:
new_args.append(arg)
if not dirac: # there was no simple dirac
new_args = []
for arg in sorted_args:
if arg.func is DiracDelta:
new_args.append(arg.simplify(x))
elif arg.is_Pow and arg.base.func is DiracDelta:
new_args.append(arg.func(arg.base.simplify(x), arg.exp))
else:
new_args.append(change_mul(arg, x))
if new_args != sorted_args:
nnode = Mul(*new_args).expand()
else: # if the node didn't change there is nothing to do
nnode = None
return (None, nnode)
return (dirac, Mul(*new_args))
def deltaintegrate(f, x):
"""
deltaintegrate(f, x)
The idea for integration is the following:
- If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)),
we try to simplify it.
If we could simplify it, then we integrate the resulting expression.
We already know we can integrate a simplified expression, because only
simple DiracDelta expressions are involved.
If we couldn't simplify it, there are two cases:
1) The expression is a simple expression: we return the integral,
taking care if we are dealing with a Derivative or with a proper
DiracDelta.
2) The expression is not simple (i.e. DiracDelta(cos(x))): we can do
nothing at all.
- If the node is a multiplication node having a DiracDelta term:
First we expand it.
If the expansion did work, the we try to integrate the expansion.
If not, we try to extract a simple DiracDelta term, then we have two
cases:
1) We have a simple DiracDelta term, so we return the integral.
2) We didn't have a simple term, but we do have an expression with
simplified DiracDelta terms, so we integrate this expression.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.integrals.deltafunctions import deltaintegrate
>>> from sympy import sin, cos, DiracDelta, Heaviside
>>> deltaintegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x)
sin(1)*cos(1)*Heaviside(x - 1)
>>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)
z**2*DiracDelta(x - z)*Heaviside(y - z)
See Also
========
sympy.functions.special.delta_functions.DiracDelta
sympy.integrals.integrals.Integral
"""
if not f.has(DiracDelta):
return None
from sympy.integrals import Integral, integrate
# g(x) = DiracDelta(h(x))
if f.func == DiracDelta:
h = f.simplify(x)
if h == f: # can't simplify the expression
#FIXME: the second term tells whether is DeltaDirac or Derivative
#For integrating derivatives of DiracDelta we need the chain rule
if f.is_simple(x):
if (len(f.args) <= 1 or f.args[1] == 0):
return Heaviside(f.args[0])
else:
return (DiracDelta(f.args[0], f.args[1] - 1) /
f.args[0].as_poly().LC())
else: # let's try to integrate the simplified expression
fh = integrate(h, x)
return fh
elif f.is_Mul or f.is_Pow: # g(x) = a*b*c*f(DiracDelta(h(x)))*d*e
g = f.expand()
if f != g: # the expansion worked
fh = integrate(g, x)
if fh is not None and not isinstance(fh, Integral):
return fh
else:
# no expansion performed, try to extract a simple DiracDelta term
dg, rest_mult = change_mul(f, x)
if not dg:
if rest_mult:
fh = integrate(rest_mult, x)
return fh
else:
dg = dg.simplify(x)
if dg.is_Mul: # Take out any extracted factors
dg, rest_mult_2 = change_mul(dg, x)
rest_mult = rest_mult*rest_mult_2
point = solve(dg.args[0], x)[0]
return (rest_mult.subs(x, point)*Heaviside(x - point))
return None